98,453 research outputs found

    Natural Variation and Neuromechanical Systems

    Get PDF
    Natural variation plays an important but subtle and often ignored role in neuromechanical systems. This is especially important when designing for living or hybrid systems \ud which involve a biological or self-assembling component. Accounting for natural variation can be accomplished by taking a population phenomics approach to modeling and analyzing such systems. I will advocate the position that noise in neuromechanical systems is partially represented by natural variation inherent in user physiology. Furthermore, this noise can be augmentative in systems that couple physiological systems with technology. There are several tools and approaches that can be borrowed from computational biology to characterize the populations of users as they interact with the technology. In addition to transplanted approaches, the potential of natural variation can be understood as having a range of effects on both the individual's physiology and function of the living/hybrid system over time. Finally, accounting for natural variation can be put to good use in human-machine system design, as three prescriptions for exploiting variation in design are proposed

    Optimal designs for random effect models with correlated errors with applications in population pharmacokinetics

    Get PDF
    We consider the problem of constructing optimal designs for population pharmacokinetics which use random effect models. It is common practice in the design of experiments in such studies to assume uncorrelated errors for each subject. In the present paper a new approach is introduced to determine efficient designs for nonlinear least squares estimation which addresses the problem of correlation between observations corresponding to the same subject. We use asymptotic arguments to derive optimal design densities, and the designs for finite sample sizes are constructed from the quantiles of the corresponding optimal distribution function. It is demonstrated that compared to the optimal exact designs, whose determination is a hard numerical problem, these designs are very efficient. Alternatively, the designs derived from asymptotic theory could be used as starting designs for the numerical computation of exact optimal designs. Several examples of linear and nonlinear models are presented in order to illustrate the methodology. In particular, it is demonstrated that naively chosen equally spaced designs may lead to less accurate estimation.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS324 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Probabilistic Approach to Robust Optimal Experiment Design with Chance Constraints

    Full text link
    Accurate estimation of parameters is paramount in developing high-fidelity models for complex dynamical systems. Model-based optimal experiment design (OED) approaches enable systematic design of dynamic experiments to generate input-output data sets with high information content for parameter estimation. Standard OED approaches however face two challenges: (i) experiment design under incomplete system information due to unknown true parameters, which usually requires many iterations of OED; (ii) incapability of systematically accounting for the inherent uncertainties of complex systems, which can lead to diminished effectiveness of the designed optimal excitation signal as well as violation of system constraints. This paper presents a robust OED approach for nonlinear systems with arbitrarily-shaped time-invariant probabilistic uncertainties. Polynomial chaos is used for efficient uncertainty propagation. The distinct feature of the robust OED approach is the inclusion of chance constraints to ensure constraint satisfaction in a stochastic setting. The presented approach is demonstrated by optimal experimental design for the JAK-STAT5 signaling pathway that regulates various cellular processes in a biological cell.Comment: Submitted to ADCHEM 201

    Exact reconstruction of gene regulatory networks using compressive sensing.

    Get PDF
    BackgroundWe consider the problem of reconstructing a gene regulatory network structure from limited time series gene expression data, without any a priori knowledge of connectivity. We assume that the network is sparse, meaning the connectivity among genes is much less than full connectivity. We develop a method for network reconstruction based on compressive sensing, which takes advantage of the network's sparseness.ResultsFor the case in which all genes are accessible for measurement, and there is no measurement noise, we show that our method can be used to exactly reconstruct the network. For the more general problem, in which hidden genes exist and all measurements are contaminated by noise, we show that our method leads to reliable reconstruction. In both cases, coherence of the model is used to assess the ability to reconstruct the network and to design new experiments. We demonstrate that it is possible to use the coherence distribution to guide biological experiment design effectively. By collecting a more informative dataset, the proposed method helps reduce the cost of experiments. For each problem, a set of numerical examples is presented.ConclusionsThe method provides a guarantee on how well the inferred graph structure represents the underlying system, reveals deficiencies in the data and model, and suggests experimental directions to remedy the deficiencies

    Determine measurement set for parameter estimation in biological systems modeling

    Get PDF
    Parameter estimation is challenging for biological systems modelling since the model is normally of high dimension, the measurement data are sparse and noisy, and the cost of experiments is high. Accurate recovery of parameters depend on the quantity and quality of measurement data. It is therefore important to know what measurements to be taken, when and how through optimal experimental design (OED). In this paper we present a method to determine the most informative measurement set for parameter estimation of dynamic systems, in particular biochemical reaction systems, such that the unknown parameters can be inferred with the best possible statistical quality using the data collected from the designed experiments. System analysis using matrix theory is introduced to examine the number of necessary measurement variables. The priority of each measurement variable is determined by optimal experimental design based on Fisher information matrix (FIM). The applicability and advantages of the proposed method are illustrated through an example of a signal pathway model
    corecore