3,633 research outputs found

    DFT and BIST of a multichip module for high-energy physics experiments

    Get PDF
    Engineers at Politecnico di Torino designed a multichip module for high-energy physics experiments conducted on the Large Hadron Collider. An array of these MCMs handles multichannel data acquisition and signal processing. Testing the MCM from board to die level required a combination of DFT strategie

    Towards Structural Testing of Superconductor Electronics

    Get PDF
    Many of the semiconductor technologies are already\ud facing limitations while new-generation data and\ud telecommunication systems are implemented. Although in\ud its infancy, superconductor electronics (SCE) is capable of\ud handling some of these high-end tasks. We have started a\ud defect-oriented test methodology for SCE, so that reliable\ud systems can be implemented in this technology. In this\ud paper, the details of the study on the Rapid Single-Flux\ud Quantum (RSFQ) process are presented. We present\ud common defects in the SCE processes and corresponding\ud test methodologies to detect them. The (measurement)\ud results prove that we are able to detect possible random\ud defects for statistical purposes in yield analysis. This\ud paper also presents possible test methodologies for RSFQ\ud circuits based on defect oriented testing (DOT)

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    Testing microelectronic biofluidic systems

    Get PDF
    According to the 2005 International Technology Roadmap for Semiconductors, the integration of emerging nondigital CMOS technologies will require radically different test methods, posing a major challenge for designers and test engineers. One such technology is microelectronic fluidic (MEF) arrays, which have rapidly gained importance in many biological, pharmaceutical, and industrial applications. The advantages of these systems, such as operation speed, use of very small amounts of liquid, on-board droplet detection, signal conditioning, and vast digital signal processing, make them very promising. However, testable design of these devices in a mass-production environment is still in its infancy, hampering their low-cost introduction to the market. This article describes analog and digital MEF design and testing method

    AFSM-based deterministic hardware TPG

    Get PDF
    This paper proposes a new approach for designing a cost-effective, on-chip, hardware pattern generator of deterministic test sequences. Given a pre-computed test pattern (obtained by an ATPG tool) with predetermined fault coverage, a hardware Test Pattern Generator (TPG) based on Autonomous Finite State Machines (AFSM) structure is synthesized to generate it. This new approach exploits "don't care" bits of the deterministic test patterns to lower area overhead of the TPG. Simulations using benchmark circuits show that the hardware components cost is considerably less when compared with alternative solution

    Systems Biology and the Development of Vaccines and Drugs for Malaria Treatments

    Get PDF
    The sequencing race has ended and the functional race has already begun. Microarray technology enables simultaneous gene expression analysis of thousands of genes, enabling a snapshot of an organisms’ transcriptome at an unprecedented resolution. The close correlation between gene transcription and function, allow the inference of biological processes from the assessed transcriptome profile. Among the sophisticated analytical problems in microarray technology at the front and back ends respectively, are the selection of optimal DNA oligos and computational analysis of the genes expression. In this review paper, we analyse important methods in use today in customized oligos design. In the course of executing this, we discovered that the oligos designer algorithm hanged on gene PFA0135w of chromosome 1, while designing oligos for the gene sequences of Plasmodium falciparum. We do not know the reason for this yet, as the algorithm runs on other sequences like the yeast (Saccharomyces cervisiae) and Neurospora crassa. We conclude the paper highlighting the procedures encompassing the back end phase and discuss their application to the development of vaccines and drugs for malaria treatment. Note that, malaria is the cause of significant global morbidity and mortality with 300-500 million cases annually. Our aims are not ends, but a means to achieve the following: Iterate the need for experimental biologists to (i) know how to design their customized oligos and (ii) have some idea about gene expression analysis and the need for cooperation between experimental biologists and their counterpart, the computational biologists. These will help experimental biologists to coordinate very well the front and the back ends of the system biology analysis of the whole genome effectively

    The Accurate Measurement of a Micromechanical Force Using Force-Sensitive Capacitances

    Get PDF
    A sensor for the precise and accurate measurement of micromechanical forces is presented. The sensor is based on the capacitive detection of force-induced deflection of a microstructure and integrated charge readout. The mechanical performance of the sensor is evaluated and verified with experiments. The structure has been designed to enable the separation of the force-to-deflection and deflection measurements in order to result in a sensor structure in which the response is linear with force and little affected by fringe fields. The sensor is 0.25 mm2 in size and has a force range of 0.2 mN, a zero-force capacitance of 0.5 pF, a sensitivity of 1-5 fF/uN, and a resolution that corresponds to a capacitance variation of 2 f
    • 

    corecore