6 research outputs found

    Feedbacks in QCA: a Quantitative Approach

    Get PDF
    In the post-CMOS scenario a primary role is played by the quantum-dot cellular automata (QCA) technology. Irrespective of the specific implementation principle (e.g., either molecular, or magnetic or semiconductive in the current scenario) the intrinsic deep-level pipelined behavior is the dominant issue. It has important consequences on circuit design and performance, especially in the presence of feedbacks in sequential circuits. Though partially already addressed in literature, these consequences still must be fully understood and solutions thoroughly approached to allow this technology any further advancement. This paper conducts an exhaustive analysis of the effects and the consequences derived by the presence of loops in QCA circuits. For each problem arisen, a solution is presented. The analysis is performed using as a test architecture, a complex systolic array circuit for biosequences analysis (Smith–Waterman algorithm), which represents one of the most promising application for QCA technology. The circuit is based on nanomagnetic logic as QCA implementation, is designed down to the layout level considering technological constraints and experimentally validated structures, counts up to approximately 2.3 milion nanomagnets, and is described and simulated with HDL language using as a testbench realistic protein alignment sequences. The results here presented constitute a fundamental advancement in the emerging technologies field since: 1) they are based on a quantitative approach relying on a realistic and complex circuit involving a large variety of QCA blocks; 2) they strictly are reckoned starting from current technological limits without relying on unrealistic assumptions; 3) they provide general rules to design complex sequential circuits with intrinsically pipelined technologies, like QCA; and 4) they prove with a real application benchmark how to maximize the circuits performance

    Emerging Technologies - NanoMagnets Logic (NML)

    Get PDF
    In the last decades CMOS technology has ruled the electronic scenario thanks to the constant scaling of transistor sizes. With the reduction of transistor sizes circuit area decreases, clock frequency increases and power consumption decreases accordingly. However CMOS scaling is now approaching its physical limits and many believe that CMOS technology will not be able to reach the end of the Roadmap. This is mainly due to increasing difficulties in the fabrication process, that is becoming very expensive, and to the unavoidable impact of leakage losses, particularly thanks to gate tunnel current. In this scenario many alternative technologies are studied to overcome the limitations of CMOS transistors. Among these possibilities, magnetic based technologies, like NanoMagnet Logic (NML) are among the most interesting. The reason of this interest lies in their magnetic nature, that opens up entire new possibilities in the design of logic circuits, like the possibility to mix logic and memory in the same device. Moreover they have no standby power consumption and potentially a much lower power consumption of CMOS transistors. In literature NML logic is well studied and theoretical and experimental proofs of concept were already found. However two important points are not enough considered in the analysis approach followed by most of the work in literature. First of all, no complex circuits are analyzed. NML logic is very different from CMOS technologies, so to completely understand the potential of this technology it is mandatory to investigate complex architectures. Secondly, most of the solutions proposed do not take into account the constraints derived from fabrication process, making them unrealistic and difficult to be fabricated experimentally. This thesis focuses therefore on NML logic keeping into account these two important limitations in the research approach followed in literature. The aim is to obtain a complete and accurate overview of NML logic, finding realistic circuital solutions and trying to improve at the same time their performance. After a brief and complete introduction (Chapter 1), the thesis is divided in two parts, which cover the two fundamental points followed in this three years of research: A circuits architecture analysis and a technological analysis. In the architecture analysis first an innovative VHDL model is described in Chapter 2. This model is extensively used in the analysis because it allows fast simulation of complex circuits, with, at the same time, the possibility to estimate circuit per- formance, like area and power consumption. In Chapter 3 the problem of signals synchronization in complex NML circuits is analyzed and solved, using as benchmark a simple but complete NML microprocessor. Different solutions based on asynchronous logic are studied and a new asynchronous solution, specifically designed to exploit the potential of NML logic, is developed. In Chapter 4 the layout of NML circuits is studied on a more physical level, considering the limitations of fabrication processes. The layout of NML circuits is therefore changed accordingly to these constraints. Secondly CMOS circuits architectures are compared to more simple architectures, evaluating therefore which one is more suited for NML logic. Finally the problem of interconnections in NML technology is analyzed and solutions to improve it are found. In Chapter 5 the problem of feedback signals in heavy pipelined technologies, like NML, is studied. Solutions to improve performances and synchronize signals are developed. Systolic arrays are then analyzed as possible candidate to exploit NML potential. Finally in Chapter 6 ToPoliNano, a simulator dedicated to NML and other emerging technologies, that we are developing, is described. This simulator allows to follow the same top-down approach followed for CMOS technology. The layout generator and the simulation engine are detailed described. In the first chapter of the technological analysis (Chapter 7), the performance of NML logic is explored throughout low level simulations. The aim is to understand if these circuits can be fabricated with optical lithography, allowing therefore the commercial development of NML logic. Basic logic gates and the clock system are there analyzed from a low level perspective. In Chapter 8 an innovative electric clock system for NML technology is shown and the first experimental results are reported. This clock system allows to achieve true low power for NML technology, obtaining a reduction of power consumption of 20 times considering the best CMOS transistors available. This power consumption takes into account all the losses, also the clock system losses. Moreover the solution presented can be fabricated with current technological processes. The research work behind this thesis represents an important breakthrough in NML logic. The solutions here presented allow the design and fabrication of complex NML circuits, considering the particular characteristics of this technology and considerably improving the performance. Moreover the technological solutions here presented allow the design and fabrication of circuits with available fabrication process with a considerable advantage over CMOS in terms of power consumption. This thesis represents therefore a considerable step froward in the study and development of NML technolog

    Cellular Automata

    Get PDF
    Modelling and simulation are disciplines of major importance for science and engineering. There is no science without models, and simulation has nowadays become a very useful tool, sometimes unavoidable, for development of both science and engineering. The main attractive feature of cellular automata is that, in spite of their conceptual simplicity which allows an easiness of implementation for computer simulation, as a detailed and complete mathematical analysis in principle, they are able to exhibit a wide variety of amazingly complex behaviour. This feature of cellular automata has attracted the researchers' attention from a wide variety of divergent fields of the exact disciplines of science and engineering, but also of the social sciences, and sometimes beyond. The collective complex behaviour of numerous systems, which emerge from the interaction of a multitude of simple individuals, is being conveniently modelled and simulated with cellular automata for very different purposes. In this book, a number of innovative applications of cellular automata models in the fields of Quantum Computing, Materials Science, Cryptography and Coding, and Robotics and Image Processing are presented
    corecore