3,047 research outputs found

    Distributed Data-Gathering and -Processing in Smart Cities: An Information-Centric Approach

    Get PDF
    The technological advancements along with the proliferation of smart and connected devices (things) motivated the exploration of the creation of smart cities aimed at improving the quality of life, economic growth, and efficient resource utilization. Some recent initiatives defined a smart city network as the interconnection of the existing independent and heterogeneous networks and the infrastructure. However, considering the heterogeneity of the devices, communication technologies, network protocols, and platforms the interoperability of these networks is a challenge requiring more attention. In this paper, we propose the design of a novel Information-Centric Smart City architecture (iSmart), focusing on the demand of the future applications, such as efficient machineto-machine communication, low latency computation offloading, large data communication requirements, and advanced security. In designing iSmart, we use the Named-Data Networking (NDN) architecture as the underlying communication substrate to promote semantics-based communication and achieve seamless compute/data sharing

    Cloud Computing in VANETs: Architecture, Taxonomy, and Challenges

    Get PDF
    Cloud Computing in VANETs (CC-V) has been investigated into two major themes of research including Vehicular Cloud Computing (VCC) and Vehicle using Cloud (VuC). VCC is the realization of autonomous cloud among vehicles to share their abundant resources. VuC is the efficient usage of conventional cloud by on-road vehicles via a reliable Internet connection. Recently, number of advancements have been made to address the issues and challenges in VCC and VuC. This paper qualitatively reviews CC-V with the emphasis on layered architecture, network component, taxonomy, and future challenges. Specifically, a four-layered architecture for CC-V is proposed including perception, co-ordination, artificial intelligence and smart application layers. Three network component of CC-V namely, vehicle, connection and computation are explored with their cooperative roles. A taxonomy for CC-V is presented considering major themes of research in the area including design of architecture, data dissemination, security, and applications. Related literature on each theme are critically investigated with comparative assessment of recent advances. Finally, some open research challenges are identified as future issues. The challenges are the outcome of the critical and qualitative assessment of literature on CC-V

    Access Control Mechanisms in Named Data Networks:A Comprehensive Survey

    Get PDF
    Information-Centric Networking (ICN) has recently emerged as a prominent candidate for the Future Internet Architecture (FIA) that addresses existing issues with the host-centric communication model of the current TCP/IP-based Internet. Named Data Networking (NDN) is one of the most recent and active ICN architectures that provides a clean slate approach for Internet communication. NDN provides intrinsic content security where security is directly provided to the content instead of communication channel. Among other security aspects, Access Control (AC) rules specify the privileges for the entities that can access the content. In TCP/IP-based AC systems, due to the client-server communication model, the servers control which client can access a particular content. In contrast, ICN-based networks use content names to drive communication and decouple the content from its original location. This phenomenon leads to the loss of control over the content causing different challenges for the realization of efficient AC mechanisms. To date, considerable efforts have been made to develop various AC mechanisms in NDN. In this paper, we provide a detailed and comprehensive survey of the AC mechanisms in NDN. We follow a holistic approach towards AC in NDN where we first summarize the ICN paradigm, describe the changes from channel-based security to content-based security and highlight different cryptographic algorithms and security protocols in NDN. We then classify the existing AC mechanisms into two main categories: Encryption-based AC and Encryption-independent AC. Each category has different classes based on the working principle of AC (e.g., Attribute-based AC, Name-based AC, Identity-based AC, etc). Finally, we present the lessons learned from the existing AC mechanisms and identify the challenges of NDN-based AC at large, highlighting future research directions for the community.Comment: This paper has been accepted for publication by the ACM Computing Surveys. The final version will be published by the AC

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community
    • …
    corecore