11,595 research outputs found

    "Hey Model!" -- Natural User Interactions and Agency in Accessible Interactive 3D Models

    Full text link
    While developments in 3D printing have opened up opportunities for improved access to graphical information for people who are blind or have low vision (BLV), they can provide only limited detailed and contextual information. Interactive 3D printed models (I3Ms) that provide audio labels and/or a conversational agent interface potentially overcome this limitation. We conducted a Wizard-of-Oz exploratory study to uncover the multi-modal interaction techniques that BLV people would like to use when exploring I3Ms, and investigated their attitudes towards different levels of model agency. These findings informed the creation of an I3M prototype of the solar system. A second user study with this model revealed a hierarchy of interaction, with BLV users preferring tactile exploration, followed by touch gestures to trigger audio labels, and then natural language to fill in knowledge gaps and confirm understanding.Comment: Paper presented at ACM CHI 2020: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, ACM, New York, April 2020; Replacement: typos correcte

    MapSense: multi-sensory interactive maps for children living with visual impairments

    Get PDF
    We report on the design process leading to the creation of MapSense, a multi-sensory interactive map for visually impaired children. We conducted a formative study in a specialized institute to understand children’s educational needs, their context of care and their preferences regarding interactive technologies. The findings (1) outline the needs for tools and methods to help children to acquire spatial skills and (2) provide four design guidelines for educational assistive technologies. Based on these findings and an iterative process, we designed and deployed MapSense in the institute during two days. It enables collaborations between children with a broad range of impairments, proposes reflective and ludic scenarios and allows caretakers to customize it as they wish. A field experiment reveals that both children and caretakers considered the system successful and empowering

    MapSense: Design and Field Study of Interactive Maps for Children Living with Visual Impairments

    Get PDF
    We report on the design process leading to the creation of MapSense, a multi-sensory interactive map for visually impaired children. We conducted a formative study in a specialized institute to understand children’s educational needs, their context of care and their preferences regarding interactive technologies. The findings (1) outline the needs for tools and methods to help children to acquire spatial skills and (2) provide four design guidelines for educational assistive technologies. Based on these findings and an iterative process, we designed and deployed MapSense in the institute during two days. It enables collaborations between children with a broad range of impairments, proposes reflective and ludic scenarios and allows caretakers to customize it as they wish. A field experiment reveals that both children and caretakers considered the system successful and empowering

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    See3D: 3D Printing for People Who Are Blind

    Get PDF
    Abstract Objects such as snowflakes, castles, and butterflies have become more than just words when explored as a 3D print. The founder’s passion for braille led to the creation of the program See3D, which organizes the printing and distribution of 3D printed models for people who are blind. 3D prints such as DNA, cells, animals, constellations, telescopes, historic landmarks, logos, and maps were created to fulfill requests by people who are blind for tactile learning tools. Recipients shared their feedback on how to improve the models, and the printing and distribution service. See3D seeks to spread awareness about accessibility by presenting at technology fairs and demonstrating to students how to work 3D printers. A culmination of research and interactions with people who are blind, blindness organizations, educators, and scientists on how 3D printing has impacted those who are blind and sighted added to the development of See3D. Currently, See3D is a tax-exempt, non-profit 501(c)(3) organization that has distributed more than 800 models to people in the United States and around the world, and continues to build its network of volunteers and collaborators. Cover Page Footnote/Acknowledgments See3D would like to acknowledge the following organizations: the GE Additive Education Program, Jane Goodall’s Roots & Shoots, Vora Ventures, IC3D, GeckoTek 3D Printer Build Plates, Polar3D, the Clovernook Center for the Blind & Visually Impaired (Cincinnati), the CSUN Assistive Technology Conference, The Ohio State University Entrepreneurial Business Law Clinic, and The Ohio State University Innovation Studio

    Modular 3-D-printed education tool for blind and visually impaired students oriented to net structures

    Get PDF
    Contribution: This article presents the design, creation, testing, and results after the use of a 3-D-printed educational tool that helped a blind student learning electric circuits theory in higher education. Background: Educational tools oriented to visually impaired and blind students in higher education are limited or even nonexistent in the STEM area. Previous developments on the field present in the literature, including other 3-D printing solutions, have been revised and compared to the proposed educational tool. Intended Outcomes: The tool was tested by a blind student in order to test the potential of the design to achieve a better understanding of the topology and performance of electric circuits. The main purpose of the tool described in this work is helping to increase the resources available in the field of teaching students with visual impairments. Application Design: 3-D technology has the potential to be used to create accessibility tools for visually impaired and blind individuals. Modular systems can be used to create complex structures using simple elements. A modular 3-D-printed tool was fabricated to help blind and visually impaired students to learn net structures. Findings: The 3-D tool has allowed the blind student to work autonomously in the study of simple electric circuits and supplies the teacher with a resource to communicate with the student in an easy and fast way. Updated design can be used to describe more complex net structures that can be applied to most electric circuits despite their complexity. The use of the modular system provided the blind student with a direct representation of the whole subject, even when it involved a great amount of graphical information and manipulation.This work was supported by the "Programa de AtenciĂłn a Estudiantes con Discapacidad" from Universidad Carlos III de Madrid
    • 

    corecore