6,154 research outputs found

    Alternative model for the administration and analysis of research-based assessments

    Full text link
    Research-based assessments represent a valuable tool for both instructors and researchers interested in improving undergraduate physics education. However, the historical model for disseminating and propagating conceptual and attitudinal assessments developed by the physics education research (PER) community has not resulted in widespread adoption of these assessments within the broader community of physics instructors. Within this historical model, assessment developers create high quality, validated assessments, make them available for a wide range of instructors to use, and provide minimal (if any) support to assist with administration or analysis of the results. Here, we present and discuss an alternative model for assessment dissemination, which is characterized by centralized data collection and analysis. This model provides a greater degree of support for both researchers and instructors in order to more explicitly support adoption of research-based assessments. Specifically, we describe our experiences developing a centralized, automated system for an attitudinal assessment we previously created to examine students' epistemologies and expectations about experimental physics. This system provides a proof-of-concept that we use to discuss the advantages associated with centralized administration and data collection for research-based assessments in PER. We also discuss the challenges that we encountered while developing, maintaining, and automating this system. Ultimately, we argue that centralized administration and data collection for standardized assessments is a viable and potentially advantageous alternative to the default model characterized by decentralized administration and analysis. Moreover, with the help of online administration and automation, this model can support the long-term sustainability of centralized assessment systems.Comment: 7 pages, 1 figure, accepted in Phys. Rev. PE

    Theory and Design of Flight-Vehicle Engines

    Get PDF
    Papers are presented on such topics as the testing of aircraft engines, errors in the experimental determination of the parameters of scramjet engines, the effect of the nonuniformity of supersonic flow with shocks on friction and heat transfer in the channel of a hypersonic ramjet engine, and the selection of the basic parameters of cooled GTE turbines. Consideration is also given to the choice of optimal total wedge angle for the acceleration of aerospace vehicles, the theory of an electromagnetic-resonator engine, the dynamic characteristics of the pumps and turbines of liquid propellant rocket engines in transition regimes, and a hierarchy of mathematical models for spacecraft control engines

    Adversarial Machine Learning in Network Intrusion Detection Systems

    Full text link
    Adversarial examples are inputs to a machine learning system intentionally crafted by an attacker to fool the model into producing an incorrect output. These examples have achieved a great deal of success in several domains such as image recognition, speech recognition and spam detection. In this paper, we study the nature of the adversarial problem in Network Intrusion Detection Systems (NIDS). We focus on the attack perspective, which includes techniques to generate adversarial examples capable of evading a variety of machine learning models. More specifically, we explore the use of evolutionary computation (particle swarm optimization and genetic algorithm) and deep learning (generative adversarial networks) as tools for adversarial example generation. To assess the performance of these algorithms in evading a NIDS, we apply them to two publicly available data sets, namely the NSL-KDD and UNSW-NB15, and we contrast them to a baseline perturbation method: Monte Carlo simulation. The results show that our adversarial example generation techniques cause high misclassification rates in eleven different machine learning models, along with a voting classifier. Our work highlights the vulnerability of machine learning based NIDS in the face of adversarial perturbation.Comment: 25 pages, 6 figures, 4 table

    Ontologies for automatic question generation

    Get PDF
    Assessment is an important tool for formal learning, especially in higher education. At present, many universities use online assessment systems where questions are entered manually into a question bank system. This kind of system requires the instructor’s time and effort to construct questions manually. The main aim of this thesis is, therefore, to contribute to the investigation of new question generation strategies for short/long answer questions in order to allow for the development of automatic factual question generation from an ontology for educational assessment purposes. This research is guided by four research questions: (1) How well can an ontology be used for generating factual assessment questions? (2) How can questions be generated from course ontology? (3) Are the ontological question generation strategies able to generate acceptable assessment questions? and (4) Do the topic-based indexing able to improve the feasibility of AQGen. We firstly conduct ontology validation to evaluate the appropriateness of concept representation using a competency question approach. We used revision questions from the textbook to obtain keyword (in revision questions) and a concept (in the ontology) matching. The results show that only half of the ontology concepts matched the keywords. We took further investigation on the unmatched concepts and found some incorrect concept naming and later suggest a guideline for an appropriate concept naming. At the same time, we introduce validation of ontology using revision questions as competency questions to check for ontology completeness. Furthermore, we also proposed 17 short/long answer question templates for 3 question categories, namely definition, concept completion and comparison. In the subsequent part of the thesis, we develop the AQGen tool and evaluate the generated questions. Two Computer Science subjects, namely OS and CNS, are chosen to evaluate AQGen generated questions. We conduct a questionnaire survey from 17 domain experts to identify experts’ agreement on the acceptability measure of AQGen generated questions. The experts’ agreements for acceptability measure are favourable, and it is reported that three of the four QG strategies proposed can generate acceptable questions. It has generated thousands of questions from the 3 question categories. AQGen is updated with question selection to generate a feasible question set from a tremendous amount of generated questions before. We have suggested topic-based indexing with the purpose to assert knowledge about topic chapters into ontology representation for question selection. The topic indexing shows a feasible result for filtering question by topics. Finally, our results contribute to an understanding of ontology element representation for question generations and how to automatically generate questions from ontology for education assessment

    Planning for Density in a Driverless World

    Get PDF
    Automobile-centered, low-density development was the defining feature of population growth in the United States for decades. This development pattern displaced wildlife, destroyed habitat, and contributed to a national loss of biodiversity. It also meant, eventually, that commutes and air quality worsened, a sense of local character was lost in many places, and the negative consequences of sprawl impacted an increasing percentage of the population. Those impacts led to something of a shift in the national attitude toward sprawl. More people than ever are fluent in concepts of “smart growth,” “new urbanism,” and “green building,” and with these tools and others, municipalities across the country are working to redevelop a central core, rethink failing transit systems, and promote pockets of density. Changing technology may disrupt this trend. Self-driving vehicles are expected to be widespread within the next several decades. Those vehicles will likely reduce congestion, air pollution, and deaths, and free up huge amounts of productive time in the car. These benefits may also eliminate much of the conventional motivation and rationale behind sprawl reduction. As the time-cost of driving falls, driverless cars have the potential to incentivize human development of land that, by virtue of its distance from settled metropolitan areas, had been previously untouched. From the broader ecological perspective, each human surge into undeveloped land results in habitat destruction and fragmentation, and additional loss of biological diversity. New automobile technology may therefore usher in better air quality, increased safety, and a significant threat to ecosystem health. Our urban and suburban environments have been molded for centuries to the needs of various forms of transportation. The same result appears likely to occur in response to autonomous vehicles, if proactive steps are not taken to address their likely impacts. Currently, little planning is being done to prepare for driverless technology. Actors at multiple levels, however, have tools at their disposal to help ensure that new technology does not come at the expense of the nation’s remaining natural habitats. This Article advocates for a shift in paradigm from policies that are merely anti-car to those that are pro-density, and provides suggestions for both cities and suburban areas for how harness the positive aspects of driverless cars while trying to stem the negative. Planning for density regardless of technology will help to ensure that, for the world of the future, there is actually a world
    • …
    corecore