38 research outputs found

    Designing Fair Ranking Schemes

    Full text link
    Items from a database are often ranked based on a combination of multiple criteria. A user may have the flexibility to accept combinations that weigh these criteria differently, within limits. On the other hand, this choice of weights can greatly affect the fairness of the produced ranking. In this paper, we develop a system that helps users choose criterion weights that lead to greater fairness. We consider ranking functions that compute the score of each item as a weighted sum of (numeric) attribute values, and then sort items on their score. Each ranking function can be expressed as a vector of weights, or as a point in a multi-dimensional space. For a broad range of fairness criteria, we show how to efficiently identify regions in this space that satisfy these criteria. Using this identification method, our system is able to tell users whether their proposed ranking function satisfies the desired fairness criteria and, if it does not, to suggest the smallest modification that does. We develop user-controllable approximation that and indexing techniques that are applied during preprocessing, and support sub-second response times during the online phase. Our extensive experiments on real datasets demonstrate that our methods are able to find solutions that satisfy fairness criteria effectively and efficiently

    Decision making with fair ranking

    Get PDF
    Abstract and Figures Ranking is a responsible process because it involves working with sensitive attributes that can discriminate alternatives. Due to the availability of a large amount of data for automated processing, ranking is increasingly in use in decision making. Therefore, concepts of algorithmic fairness in the field of classification in machine learning find their place in fair ranking methods. This paper provides an overview of fair ranking terms, fair ranking challenges, and fair ranking algorithms from the state-of-the-art literature

    Fairness of Exposure in Rankings

    Full text link
    Rankings are ubiquitous in the online world today. As we have transitioned from finding books in libraries to ranking products, jobs, job applicants, opinions and potential romantic partners, there is a substantial precedent that ranking systems have a responsibility not only to their users but also to the items being ranked. To address these often conflicting responsibilities, we propose a conceptual and computational framework that allows the formulation of fairness constraints on rankings in terms of exposure allocation. As part of this framework, we develop efficient algorithms for finding rankings that maximize the utility for the user while provably satisfying a specifiable notion of fairness. Since fairness goals can be application specific, we show how a broad range of fairness constraints can be implemented using our framework, including forms of demographic parity, disparate treatment, and disparate impact constraints. We illustrate the effect of these constraints by providing empirical results on two ranking problems.Comment: In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, UK, 201

    Rankers, Rankees, & Rankings: Peeking into the Pandora's Box from a Socio-Technical Perspective

    Full text link
    Algorithmic rankers have a profound impact on our increasingly data-driven society. From leisurely activities like the movies that we watch, the restaurants that we patronize; to highly consequential decisions, like making educational and occupational choices or getting hired by companies -- these are all driven by sophisticated yet mostly inaccessible rankers. A small change to how these algorithms process the rankees (i.e., the data items that are ranked) can have profound consequences. For example, a change in rankings can lead to deterioration of the prestige of a university or have drastic consequences on a job candidate who missed out being in the list of the preferred top-k for an organization. This paper is a call to action to the human-centered data science research community to develop principled methods, measures, and metrics for studying the interactions among the socio-technical context of use, technological innovations, and the resulting consequences of algorithmic rankings on multiple stakeholders. Given the spate of new legislations on algorithmic accountability, it is imperative that researchers from social science, human-computer interaction, and data science work in unison for demystifying how rankings are produced, who has agency to change them, and what metrics of socio-technical impact one must use for informing the context of use.Comment: Accepted for Interrogating Human-Centered Data Science workshop at CHI'2

    Fairness-Aware Ranking in Search & Recommendation Systems with Application to LinkedIn Talent Search

    Full text link
    We present a framework for quantifying and mitigating algorithmic bias in mechanisms designed for ranking individuals, typically used as part of web-scale search and recommendation systems. We first propose complementary measures to quantify bias with respect to protected attributes such as gender and age. We then present algorithms for computing fairness-aware re-ranking of results. For a given search or recommendation task, our algorithms seek to achieve a desired distribution of top ranked results with respect to one or more protected attributes. We show that such a framework can be tailored to achieve fairness criteria such as equality of opportunity and demographic parity depending on the choice of the desired distribution. We evaluate the proposed algorithms via extensive simulations over different parameter choices, and study the effect of fairness-aware ranking on both bias and utility measures. We finally present the online A/B testing results from applying our framework towards representative ranking in LinkedIn Talent Search, and discuss the lessons learned in practice. Our approach resulted in tremendous improvement in the fairness metrics (nearly three fold increase in the number of search queries with representative results) without affecting the business metrics, which paved the way for deployment to 100% of LinkedIn Recruiter users worldwide. Ours is the first large-scale deployed framework for ensuring fairness in the hiring domain, with the potential positive impact for more than 630M LinkedIn members.Comment: This paper has been accepted for publication at ACM KDD 201

    Operationalizing Individual Fairness with Pairwise Fair Representations

    No full text
    We revisit the notion of individual fairness proposed by Dwork et al. A central challenge in operationalizing their approach is the difficulty in eliciting a human specification of a similarity metric. In this paper, we propose an operationalization of individual fairness that does not rely on a human specification of a distance metric. Instead, we propose novel approaches to elicit and leverage side-information on equally deserving individuals to counter subordination between social groups. We model this knowledge as a fairness graph, and learn a unified Pairwise Fair Representation (PFR) of the data that captures both data-driven similarity between individuals and the pairwise side-information in fairness graph. We elicit fairness judgments from a variety of sources, including human judgments for two real-world datasets on recidivism prediction (COMPAS) and violent neighborhood prediction (Crime & Communities). Our experiments show that the PFR model for operationalizing individual fairness is practically viable.Comment: To be published in the proceedings of the VLDB Endowment, Vol. 13, Issue.
    corecore