6 research outputs found

    Designing 3D selection techniques using ballistic and corrective movements

    Get PDF
    The two-component model is a human movement model in which an aimed movement is broken into a voluntary ballistic movement followed by a corrective movement. Recently, experimental evidence has shown that 3D aimed movements in virtual environments can be modeled using the two-component model. In this paper, we use the two-component model for designing 3D interaction techniques which aim at facilitating pointing tasks in virtual reality. This is achieved by parsing the 3D aimed movement in real time into the ballistic and corrective phases, and reducing the index of difficulty of the task during the corrective phase. We implemented two pointing techniques. The 'AutoWidth' technique increases the target width during the corrective phase and the 'AutoDistance' technique decreases the distance to the target at the end of ballistic phase. We experimentally demonstrated the benefit of these techniques by comparing them with freehand aimed movements. It was shown that both 'AutoWidth' and 'AutoDistance' techniques exhibit significant improvement on target acquisition time

    Designing 3D Selection Techniques Using Ballistic and Corrective Movements

    Get PDF
    The two-component model is a human movement model in which an aimed movement is broken into a voluntary ballistic movement followed by a corrective movement. Recently, experimental evidence has shown that 3D aimed movements in virtual environments can be modeled using the two-component model. In this paper, we use the two-component model for designing 3D interaction techniques which aim at facilitating pointing tasks in virtual reality. This is achieved by parsing the 3D aimed movement in real time into the ballistic and corrective phases, and reducing the index of difficulty of the task during the corrective phase. We implemented two pointing techniques. The ‘AutoWidth’ technique increases the target width during the corrective phase and the ‘AutoDistance’ technique decreases the distance to the target at the end of ballistic phase. We experimentally demonstrated the benefit of these techniques by comparing them with freehand aimed movements. It was shown that both ‘AutoWidth’ and ‘AutoDistance’ techniques exhibit significant improvement on target acquisition time

    Designing 3D Selection Techniques Using Ballistic and Corrective Movements

    No full text
    The two-component model is a human movement model in which an aimed movement is broken into a voluntary ballistic movement followed by a corrective movement. Recently, experimental evidence has shown that 3D aimed movements in virtual environments can be modeled using the two-component model. In this paper, we use the two-component model for designing 3D interaction techniques which aim at facilitating pointing tasks in virtual reality. This is achieved by parsing the 3D aimed movement in real time into the ballistic and corrective phases, and reducing the index of difficulty of the task during the corrective phase. We implemented two pointing techniques. The ‘autoWidth’ technique increases the target width during the corrective phase and the ‘AutoDistance’ technique decreases the distance to the target at the end of ballistic phase. We experimentally demonstrated the benefit of these techniques by comparing them with freehand aimed movements. It was shown that both ‘AutoWidth’ and ‘AutoDistance’ techniques exhibit significant improvement on target acquisition time

    Designing 3D selection techniques using ballistic and corrective movements

    No full text
    The two-component model is a human movement model in which an aimed movement is broken into a voluntary ballistic movement followed by a corrective movement. Recently, experimental evidence has shown that 3D aimed movements in virtual environments can be modeled using the two-component model. In this paper, we use the two-component model for designing 3D interaction techniques which aim at facilitating pointing tasks in virtual reality. This is achieved by parsing the 3D aimed movement in real time into the ballistic and corrective phases, and reducing the index of difficulty of the task during the corrective phase. We implemented two pointing techniques. The 'AutoWidth' technique increases the target width during the corrective phase and the 'AutoDistance' technique decreases the distance to the target at the end of ballistic phase. We experimentally demonstrated the benefit of these techniques by comparing them with freehand aimed movements. It was shown that both 'AutoWidth' and 'AutoDistance' techniques exhibit significant improvement on target acquisition time

    Designing 3D selection techniques using ballistic and corrective movements

    Get PDF
    The two-component model is a human movement model in which an aimed movement is broken into a voluntary ballistic movement followed by a corrective movement. Recently, experimental evidence has shown that 3D aimed movements in virtual environments can be modeled using the two-component model. In this paper, we use the two-component model for designing 3D interaction techniques which aim at facilitating pointing tasks in virtual reality. This is achieved by parsing the 3D aimed movement in real time into the ballistic and corrective phases, and reducing the index of difficulty of the task during the corrective phase. We implemented two pointing techniques. The 'AutoWidth' technique increases the target width during the corrective phase and the 'AutoDistance' technique decreases the distance to the target at the end of ballistic phase. We experimentally demonstrated the benefit of these techniques by comparing them with freehand aimed movements. It was shown that both 'AutoWidth' and 'AutoDistance' techniques exhibit significant improvement on target acquisition time

    Human factors in instructional augmented reality for intravehicular spaceflight activities and How gravity influences the setup of interfaces operated by direct object selection

    Get PDF
    In human spaceflight, advanced user interfaces are becoming an interesting mean to facilitate human-machine interaction, enhancing and guaranteeing the sequences of intravehicular space operations. The efforts made to ease such operations have shown strong interests in novel human-computer interaction like Augmented Reality (AR). The work presented in this thesis is directed towards a user-driven design for AR-assisted space operations, iteratively solving issues arisen from the problem space, which also includes the consideration of the effect of altered gravity on handling such interfaces.Auch in der bemannten Raumfahrt steigt das Interesse an neuartigen Benutzerschnittstellen, um nicht nur die Mensch-Maschine-Interaktion effektiver zu gestalten, sondern auch um einen korrekten Arbeitsablauf sicherzustellen. In der Vergangenheit wurden wiederholt Anstrengungen unternommen, Innenbordarbeiten mit Hilfe von Augmented Reality (AR) zu erleichtern. Diese Arbeit konzentriert sich auf einen nutzerorientierten AR-Ansatz, welcher zum Ziel hat, die Probleme schrittweise in einem iterativen Designprozess zu lösen. Dies erfordert auch die Berücksichtigung veränderter Schwerkraftbedingungen
    corecore