1 research outputs found

    Towards Reliability- & Variability-aware Design-Technology Co-optimization in Advanced Nodes: Defect Characterization, Industry-friendly Modelling and ML-assisted Prediction

    Get PDF
    Reliability- & variability-aware Design Technology co-optimization (RV-DTCO) becomes indispensable with advanced nodes. However, four key issues hinder its practical adoption: the lack of characterization technique that offer both accuracy and efficiency, the lack of defect model with long-term prediction capability, the lack of compact model compatible with most EDA platforms, and the low efficiency in circuit-level prediction to support frequent iterations during co-optimization. Demonstrating with 7nm technology, this work tackles these issues by developing an efficient characterization method for separating defects, introducing a comprehensive test-data-verified defect-centric physical-based model & an industry-friendly OMI-based compact model, and proposing a machine learning-assisted approach to accelerate circuit-level prediction. With these achievements, a RV-DTCO flow is established and demonstrated on 3nm GAA technology to bridge the material level to the circuit level. The work paves ways in boosting adoption of RV-DTCO in both circuit design & process development for ultimate nodes. Index Terms— Design Technology co-optimization (DTCO), FinFET, reliability, variability, Discharging-based multi-pulse technique (DMP), OMI, ST-GN
    corecore