1,017,006 research outputs found
Recommended from our members
Design Space Exploration in Cyber-Physical Systems
Cyber physical systems (CPS) integrate a variety of engineering areas such as control, mechanical and computer engineering in a holistic design effort. While interdependencies between the different disciplines are key attributes of CPS design science, little is known about the impact of design decisions of the cyber part on the overall system qualities. To investigate these interdependencies, this paper proposes a simulation-based Design Space Exploration (DSE) framework that considers detailed cyber system parameters such as cache size, bus width, and voltage levels in addition to physical and control parameters of the CPS. We propose an exploration algorithm that surfs the parameter configurations in the cyber physical sub-systems, in order to approximate the Pareto-optimal design points with regards to the trade-os among the design objectives, such as energy consumption and control stability. We apply the proposed framework to a network control system for an inverted-pendulum application. The presented holistic evaluation of the identified Pareto-points reveals the presence of non-trivial trade-os, which are imposed by the control, physical, and detailed cyber parameters. For instance the identified energy and control optimal design points comprise configurations with a wide range of CPU speeds, sample times and cache configuration following non-trivial zig-zag patterns. The proposed framework could identify and manage those trade-os and, as a result, is an imperative rst step to automate the search for superior CSP configurations
Formal and Informal Methods for Multi-Core Design Space Exploration
We propose a tool-supported methodology for design-space exploration for
embedded systems. It provides means to define high-level models of applications
and multi-processor architectures and evaluate the performance of different
deployment (mapping, scheduling) strategies while taking uncertainty into
account. We argue that this extension of the scope of formal verification is
important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156
Optimization of patch antennas via multithreaded simulated annealing based design exploration
In this paper, we present a new software framework for the optimization of the design of microstrip patch antennas. The proposed simulation and optimization framework implements a simulated annealing algorithm to perform design space exploration in order to identify the optimal patch antenna design. During each iteration of the optimization loop, we employ the popular MEEP simulation tool to evaluate explored design solutions. To speed up the design space exploration, the software framework is developed to run multiple MEEP simulations concurrently. This is achieved using multithreading to implement a manager-workers execution strategy. The number of worker threads is the same as the number of cores of the computer that is utilized. Thus, the computational runtime of the proposed software framework enables effective design space exploration. Simulations demonstrate the effectiveness of the proposed software framework
Design Automation and Design Space Exploration for Quantum Computers
A major hurdle to the deployment of quantum linear systems algorithms and
recent quantum simulation algorithms lies in the difficulty to find inexpensive
reversible circuits for arithmetic using existing hand coded methods. Motivated
by recent advances in reversible logic synthesis, we synthesize arithmetic
circuits using classical design automation flows and tools. The combination of
classical and reversible logic synthesis enables the automatic design of large
components in reversible logic starting from well-known hardware description
languages such as Verilog. As a prototype example for our approach we
automatically generate high quality networks for the reciprocal , which is
necessary for quantum linear systems algorithms.Comment: 6 pages, 1 figure, in 2017 Design, Automation & Test in Europe
Conference & Exhibition, DATE 2017, Lausanne, Switzerland, March 27-31, 201
Exploring Design Dimensions in Flash-based Mass-memory Devices
Mission-critical space system applications present several issues: a typical one is the design of a mass-memory device (i.e., a solid- state recorder). This goal could be accomplished by using flash- memories: the exploration of a huge number of parameters and trade-offs is needed. On the one hand flash-memories are nonvolatile, shock-resistant and power-economic, but on the other hand their cost is higher than normal hard disk, the number of erasure cycles is bounded and other different drawbacks have to be considered. In addition space environment presents various issues especially because of radiations: the design of a flash- memory based solid-state recorder implies the exploration of different and quite often contrasting dimensions. No systematic approach has so far been proposed to consider them all as a whole: as a consequence the design of flash-based mass-memory device for space applications is intended to be supported by a novel design environment currently under development and refinemen
- …
