128,004 research outputs found

    Optimal design of rain gauge network in the Middle Yarra River catchment, Australia

    Get PDF
    Rainfall data are a fundamental input for effective planning, designing and operating of water resources projects. A well-designed rain gauge network is capable of providing accurate estimates of necessary areal average and/or point rainfall estimates at any desired ungauged location in a catchment. Increasing network density with additional rain gauge stations has been the main underlying criterion in the past to reduce error and uncertainty in rainfall estimates. However, installing and operation of additional stations in a network involves large cost and manpower. Hence, the objective of this study is to design an optimal rain gauge network in the Middle Yarra River catchment in Victoria, Australia. The optimal positioning of additional stations as well as optimally relocating of existing redundant stations using the kriging-based geostatistical approach was undertaken in this study. Reduction of kriging error was considered as an indicator for optimal spatial positioning of the stations. Daily rainfall records of 1997 (an El Niño year) and 2010 (a La Niña year) were used for the analysis. Ordinary kriging was applied for rainfall data interpolation to estimate the kriging error for the network. The results indicate that significant reduction in the kriging error can be achieved by the optimal spatial positioning of the additional as well as redundant stations. Thus, the obtained optimal rain gauge network is expected to be appropriate for providing high quality rainfall estimates over the catchment. The concept proposed in this study for optimal rain gauge network design through combined use of additional and redundant stations together is equally applicable to any other catchment

    A review of applied methods in Europe for flood-frequency analysis in a changing environment

    Get PDF
    The report presents a review of methods used in Europe for trend analysis, climate change projections and non-stationary analysis of extreme precipitation and flood frequency. In addition, main findings of the analyses are presented, including a comparison of trend analysis results and climate change projections. Existing guidelines in Europe on design flood and design rainfall estimation that incorporate climate change are reviewed. The report concludes with a discussion of research needs on non-stationary frequency analysis for considering the effects of climate change and inclusion in design guidelines. Trend analyses are reported for 21 countries in Europe with results for extreme precipitation, extreme streamflow or both. A large number of national and regional trend studies have been carried out. Most studies are based on statistical methods applied to individual time series of extreme precipitation or extreme streamflow using the non-parametric Mann-Kendall trend test or regression analysis. Some studies have been reported that use field significance or regional consistency tests to analyse trends over larger areas. Some of the studies also include analysis of trend attribution. The studies reviewed indicate that there is some evidence of a general increase in extreme precipitation, whereas there are no clear indications of significant increasing trends at regional or national level of extreme streamflow. For some smaller regions increases in extreme streamflow are reported. Several studies from regions dominated by snowmelt-induced peak flows report decreases in extreme streamflow and earlier spring snowmelt peak flows. Climate change projections have been reported for 14 countries in Europe with results for extreme precipitation, extreme streamflow or both. The review shows various approaches for producing climate projections of extreme precipitation and flood frequency based on alternative climate forcing scenarios, climate projections from available global and regional climate models, methods for statistical downscaling and bias correction, and alternative hydrological models. A large number of the reported studies are based on an ensemble modelling approach that use several climate forcing scenarios and climate model projections in order to address the uncertainty on the projections of extreme precipitation and flood frequency. Some studies also include alternative statistical downscaling and bias correction methods and hydrological modelling approaches. Most studies reviewed indicate an increase in extreme precipitation under a future climate, which is consistent with the observed trend of extreme precipitation. Hydrological projections of peak flows and flood frequency show both positive and negative changes. Large increases in peak flows are reported for some catchments with rainfall-dominated peak flows, whereas a general decrease in flood magnitude and earlier spring floods are reported for catchments with snowmelt-dominated peak flows. The latter is consistent with the observed trends. The review of existing guidelines in Europe on design floods and design rainfalls shows that only few countries explicitly address climate change. These design guidelines are based on climate change adjustment factors to be applied to current design estimates and may depend on design return period and projection horizon. The review indicates a gap between the need for considering climate change impacts in design and actual published guidelines that incorporate climate change in extreme precipitation and flood frequency. Most of the studies reported are based on frequency analysis assuming stationary conditions in a certain time window (typically 30 years) representing current and future climate. There is a need for developing more consistent non-stationary frequency analysis methods that can account for the transient nature of a changing climate

    Shrunken Locally Linear Embedding for Passive Microwave Retrieval of Precipitation

    Full text link
    This paper introduces a new Bayesian approach to the inverse problem of passive microwave rainfall retrieval. The proposed methodology relies on a regularization technique and makes use of two joint dictionaries of coincidental rainfall profiles and their corresponding upwelling spectral radiative fluxes. A sequential detection-estimation strategy is adopted, which basically assumes that similar rainfall intensity values and their spectral radiances live close to some sufficiently smooth manifolds with analogous local geometry. The detection step employs a nearest neighborhood classification rule, while the estimation scheme is equipped with a constrained shrinkage estimator to ensure stability of retrieval and some physical consistency. The algorithm is examined using coincidental observations of the active precipitation radar (PR) and passive microwave imager (TMI) on board the Tropical Rainfall Measuring Mission (TRMM) satellite. We present promising results of instantaneous rainfall retrieval for some tropical storms and mesoscale convective systems over ocean, land, and coastal zones. We provide evidence that the algorithm is capable of properly capturing different storm morphologies including high intensity rain-cells and trailing light rainfall, especially over land and coastal areas. The algorithm is also validated at an annual scale for calendar year 2013 versus the standard (version 7) radar (2A25) and radiometer (2A12) rainfall products of the TRMM satellite

    A stochastic spatial-temporal disaggreation model for rainfall

    Get PDF
    A stochastic model for disaggregating spatial-temporal rainfall data is presented. In the model, the starting times of rain cells occur in a Poisson process, where each cell has a random duration and a random intensity. In space, rain cells have centres that are distributed according to a two dimensional Poisson process and have radii that follow an exponential distribution. The model is fitted to seven years of five-minute data taken from six sites across Auckland City. The historical five-minute series are then aggregated to hourly depths and stochastically disaggregated to five-minute depths using the fitted model. The disaggregated series and the original five-minute historical series are then used as input to a network flow simulation model of Auckland City’s combined and wastewater system. Simulated overflow volumes predicted by the network model from the historical and disaggregated series are found to have equivalent statistical distributions, within sampling error. The results thus support the use of the stochastic disaggregation model in urban catchment studies

    Local generalised method of moments: an application to point process-based rainfall models

    Get PDF
    Long series of simulated rainfall are required at point locations for a range of applications, including hydrological studies. Clustered point process-based rainfall models have been used for generating such simulations for many decades. These models suffer from a major limitation, however, their stationarity. Although seasonality can be allowed by fitting separate models for each calendar month or season, the models are unsuitable in their basic form for climate impact studies. In this paper, we develop new methodology to address this limitation. We extend the current fitting approach by allowing the discrete covariate, calendar month, to be replaced or supplemented with continuous covariates that are more directly related to the incidence and nature of rainfall. The covariate-dependent model parameters are estimated for each time interval using a kernel-based nonparametric approach within a generalised method-of-moments framework. An empirical study demonstrates the new methodology using a time series of 5-min rainfall data. The study considers both local mean and local linear approaches. While asymptotic results are included, the focus is on developing useable methodology for a complex model that can only be solved numerically. Issues including the choice of weighting matrix, estimation of parameter uncertainty and bandwidth and model selection are considered from this perspective

    Rainfall frequency analysis for ungauged regions using remotely sensed precipitation information

    Get PDF
    Rainfall frequency analysis, which is an important tool in hydrologic engineering, has been traditionally performed using information from gauge observations. This approach has proven to be a useful tool in planning and design for the regions where sufficient observational data are available. However, in many parts of the world where ground-based observations are sparse and limited in length, the effectiveness of statistical methods for such applications is highly limited. The sparse gauge networks over those regions, especially over remote areas and high-elevation regions, cannot represent the spatiotemporal variability of extreme rainfall events and hence preclude developing depth-duration-frequency curves (DDF) for rainfall frequency analysis. In this study, the PERSIANN-CDR dataset is used to propose a mechanism, by which satellite precipitation information could be used for rainfall frequency analysis and development of DDF curves. In the proposed framework, we first adjust the extreme precipitation time series estimated by PERSIANN-CDR using an elevation-based correction function, then use the adjusted dataset to develop DDF curves. As a proof of concept, we have implemented our proposed approach in 20 river basins in the United States with different climatic conditions and elevations. Bias adjustment results indicate that the correction model can significantly reduce the biases in PERSIANN-CDR estimates of annual maximum series, especially for high elevation regions. Comparison of the extracted DDF curves from both the original and adjusted PERSIANN-CDR data with the reported DDF curves from NOAA Atlas 14 shows that the extreme percentiles from the corrected PERSIANN-CDR are consistently closer to the gauge-based estimates at the tested basins. The median relative errors of the frequency estimates at the studied basins were less than 20% in most cases. Our proposed framework has the potential for constructing DDF curves for regions with limited or sparse gauge-based observations using remotely sensed precipitation information, and the spatiotemporal resolution of the adjusted PERSIANN-CDR data provides valuable information for various applications in remote and high elevation areas

    A Network of Portable, Low-Cost, X-Band Radars

    Get PDF
    Radar is a unique tool to get an overview on the weather situation, given its high spatio- temporal resolution. Over 60 years, researchers have been investigating ways for obtaining the best use of radar. As a result we often find assurances on how much radar is a useful tool, and it is! After this initial statement, however, regularly comes a long list on how to increase the accuracy of radar or in what direction to move for improving it. Perhaps we should rather ask: is the resulting data good enough for our application? The answers are often more complicated than desired. At first, some people expect miracles. Then, when their wishes are disappointed, they discard radar as a tool: both attitudes are wrong; radar is a unique tool to obtain an excellent overview on what is happening: when and where it is happening. At short ranges, we may even get good quantitative data. But at longer ranges it may be impossible to obtain the desired precision, e.g. the precision needed to alert people living in small catchments in mountainous terrain. We would have to set the critical limit for an alert so low that this limit would lead to an unacceptable rate of false alarm

    Statistics of spatial averages and optimal averaging in the presence of missing data

    Full text link
    We consider statistics of spatial averages estimated by weighting observations over an arbitrary spatial domain using identical and independent measuring devices, and derive an account of bias and variance in the presence of missing observations. We test the model relative to simulations, and the approximations for bias and variance with missing data are shown to compare well even when the probability of missing data is large. Previous authors have examined optimal averaging strategies for minimizing bias, variance and mean squared error of the spatial average, and we extend the analysis to the case of missing observations. Minimizing variance mainly requires higher weights where local variance and covariance is small, whereas minimizing bias requires higher weights where the field is closer to the true spatial average. Missing data increases variance and contributes to bias, and reducing both effects involves emphasizing locations with mean value nearer to the spatial average. The framework is applied to study spatially averaged rainfall over India. We use our model to estimate standard error in all-India rainfall as the combined effect of measurement uncertainty and bias, when weights are chosen so as to yield minimum mean squared error
    corecore