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A stochastic model for disaggregating spatial-temporal rainfall data is pre-
sented. In the model, the starting times of rain cells occur in a Poisson process,
where each cell has a random duration and a random intensity. In space, rain
cells have centres that are distributed according to a two dimensional Poisson
process and have radii that follow an exponential distribution. The model is
fitted to seven years of five-minute data taken from six sites across Auckland
City. The historical five-minute series are then aggregated to hourly depths
and stochastically disaggregated to five-minute depths using the fitted model.
The disaggregated series and the original five-minute historical series are then
used as input to a network flow simulation model of Auckland City’s com-
bined and wastewater system. Simulated overflow volumes predicted by the
network model from the historical and disaggregated series are found to have
equivalent statistical distributions, within sampling error. The results thus
support the use of the stochastic disaggregation model in urban catchment
studies.

1 Introduction

In a recent paper, a methodology based on a Neyman-Scott process was developed to
enable the simulation of spatial-temporal rainfall time series data [7]. The method-
ology was tested using historical records of hourly data from the Arno Catchment in
Italy; the results showing that the model was able to preserve extreme values at the
1 and 24h levels of aggregation, thus supporting the use of the model in hydrological
catchment studies, e.g. flood studies [7]. A special case of the model is considered
here for disaggregating hourly data to five-minute data.
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A range of stochastic models for disaggregating rainfall data exist. For example,
there are models for downscaling the output from deterministic global circulation
models, e.g. [22, 23, 5, 19, 18, 13], and there are models aimed more specifically
at producing fine resolution data for urban catchment studies e.g. [16, 6, 12, 8,
9, 17, 21]. The model that we consider here differs from previous disaggregation
models in that it is a conceptual-stochastic model, using only a moderate number
of parameters and incorporating random variables to represent ‘rain cells’ which are
understood to occur in the physical process. Furthermore, the model used here can
be applied in both space and time, which increases the range of possible applications.
For example, the model could be used for generating spatially representative data
at sites lacking data, i.e. spatial-temporal infilling.

The methodology used here is similar to that used in [14, 20, 4] in that ‘within
storm’ rain cells will have arrival times that occur in a Poisson process. However,
these papers apply a Bartlett-Lewis process to univariate rainfall time series, whilst
our focus here is on disaggregating spatial-temporal data to fine resolutions.

2 Auckland City Catchment

The Auckland Region is situated on the North Island of New Zealand, with mainland
Auckland City occupying 15,300 hectares on an isthmus between the Waitemata and
Manukau Harbours (Figure 1). Auckland contains considerable industrial activity,
extensive roadway, and is the largest city in New Zealand with a population of
368K, extending to 1.2 million people in the greater Auckland area. Auckland City
is forecast to grow to 583K over the next 50 years [3].

There are three types of piped drainage networks in Auckland City: wastewater,
stormwater and combined. Combined stormwater and wastewater networks remain
in 18% of the city [1]. Due to interaction among the three types of networks, the
assemblage results in two interrelated drainage systems that remove: (i) stormwater
from within Auckland City to streams and harbours where it is discharged, and (ii)
wastewater and combined flows to the Mangere wastewater treatment plant. In all
approximately 2,500 outfalls discharge potentially impaired stormwater along 82km
of coastline and numerous urban streams, which can include discharge from some
350 designed overflows structures on the combined and wastewater networks [2].

To fulfill environmental regulatory requirements and meet the demands of the
rising population, Auckland City Council and Metro Water Limited initiated an
integrated catchment study. The objective of the study is to develop a comprehensive
understanding of the Auckland City drainage system to enable engineers to redesign
and upgrade the system to meet regulatory requirements that minimize the pollution
to receiving water courses and flooding due to excess loads.

A network model of the trunk and larger wastewater and combined pipes was
assembled using the ‘MOUSE’ hydraulic model developed in [11, 10]. The network
model consists of some 3,122 manholes, 236 overflows (structures, pump stations,
and lumped overflows) and 568 sub-catchments (Figure 1; [15]).
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Figure 1: Auckland City catchment: Network model and location of rain gauges
(records are for the period: 1993-99)

An understanding of rainfall is crucial to the success of the integrated catchment
study. Available records from sites in Auckland City include five-minute data from
six sites for the period 1993-99 (Figure 1). As the historical data is limited in
extent, a spatial-temporal stochastic model [7] is proposed for simulation of long
records of multisite 1h data which could be used as input to the network model
to assess system performance under a range of conditions. However, rainfall data
at finer resolutions than 1h are needed because of the rapid rainfall event response
of an urban drainage system. Consequently, a stochastic disaggregation model is
required to enable simulated 1h series to be disaggregated to five-minute series.
A similar approach was adopted for single sites in the United Kingdom, where a
disaggregator based on an algorithm developed in [21] was used to disaggregate
simulated hourly time series [9]. The focus in this paper is to propose a suitable
model for stochastically disaggregating multisite 1h data and validate the model
with respect to the intended application using a wastewater and combined network
model for Auckland City.
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3 Model Definition

Consider a stochastic process of rain cells:

{(Ui, Vi), Si, Li, Xi, Ri},

where for the ith cell: (Ui, Vi) forms a two-dimensional Poisson process with rate ϕ
(per km2); (Ui, Vi) and Ri form discs in two-dimensional space, where (Ui, Vi) is the
disc centre and Ri is an independent random variable representing the disc radius;
Si is the arrival time of the cell which occurs in a Poisson process with rate λ; Li

is an independent random variable representing the cell lifetime, so that the cell
terminates at a time Si +Li; Xi is an independent random variable representing cell
intensity, which remains constant throughout the cell lifetime and over the area of
the disc. Rain cells can thus be thought of as cylinders in three-dimensional space
with heights given by Xi. Furthermore, the total intensity at time t and location
x ∈ R2, denoted as Y (x, t), is the sum of the intensities of all cells active at time
t and overlapping point x. The stochastic process of rain cells is similar to that
used in [7], with the exception that the cells arrive in a Poisson process instead of a
Neyman-Scott process.

For the purpose of model fitting and simulation, some assumptions are made
about the distributions of the random variables used for the rain cells: Xi is taken
to be an independent weibull random variable with parameters θ and α and survivor
function P (Xi > x) = e(x/θ)α

; the cell lifetime Li and radius Ri are taken to be
independent exponential random variables with parameters η and φ respectively.
Under these assumptions, φ2 = 2πϕ, which reduces the number of parameters in the
model to five: λ, φ, η, θ, and α.

Rainfall data are usually available as discrete time-series, so that it is necessary
to consider the aggregated stochastic process:

Y
(h)
k (x) =

∫ kh

(k−1)h

Y (x, t)dt (1)

so that Y
(h)
k (x) is the rainfall depth in the kth time interval of duration h at

location x.
Statistical properties of Y

(h)
k (x), up to third-order, follow directly by taking

C ≡ 1 in [7], equations (5)-(7). These properties then follow as:

µh = E
{

Y
(h)
k (x)

}
= λE(X)h/η (2)

γx,y,h,l = cov
{

Y
(h)
k (x), Y

(h)
k+l(y)

}
(3)

= γx,x,h,l − λ {1− P (φ, d)}E(X2)A(h, l)/η3

E
[
{Y (h)

k (x)− µh}3
]

= 6λE(X3)(ηh− 2 + ηhe−ηh + 2e−ηh)/η4 (4)
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where:

γx,x,h,l = γy,y,h,l = 2λE(X2)A(h, l)/η3 (5)

A(h, l) =

{
(hη + e−ηh − 1) for l = 0
1
2
(1− e−ηh)2e−ηh(l−1) for l > 0

(6)

P (φ, d) =
2

π

∫ π/2

0

(
φd

2cosy
+ 1

)
exp

(
−φd

2cosy

)
dy (7)

P (φ, d) is the probability that a cell overlaps some point x given that it over-
lapped a point y, at spatial separation d = ||x − y||. The moments of the weibull
distribution for the Xi are given by: E(Xr) = θr/αΓ(1 + r/α).

In the above, spatial-temporal stationarity is assumed, e.g. γx,x,h,l = γy,y,h,l in
equation 5.

4 Fitted Model

When fitting the model to five-minute time series (i.e. with h = 5mins in equations
2–4), it is convenient to work with the following dimensionless functions, which do
not depend on the cell intensity scale parameter θ:

Coefficient of variation: ν(λ, η, φ, α) = γx,x,5,0/µ5

Autocorrelation (lag 1): ρ(λ, η, φ, α) = γx,x,5,1/γx,x,5,0

Cross-correlation: ρx,y(λ, η, φ, α) = γx,y,5,0/γx,x,5,0

Coefficient of skewness: κ(λ, η, φ, α) = E[{Y (5)
k (x)− µ5}3]/γ

3/2
x,x,5,0

(8)

To obtain the sample estimates of these functions, data from the six sites (Fig-
ure 1) were pooled and the equivalent sample estimates calculated. Hours containing
zero rainfall at all sites were removed before the calculation of the sample statistics
so that the estimates were for ‘wet’ hourly sequences only. (The sample autocorre-
lation was calculated using adjacent values from ‘unbroken’ wet hourly series, using
the sample mean and variance from all the pooled data.)

The sample estimates were calculated using a similar approach to that in [7] with
the exception that one sample estimate was used for all seasons, so that the same
fitted disaggregation model would be applied over all calendar months. On first
sight this may seem an unreasonable over-simplication. However, it can perhaps
be seen to be more reasonable based on the assumption that most of the seasonal
variation in rainfall data is captured at higher levels of aggregation (e.g. hourly or
daily levels), which will be preserved in the disaggregated series.

The parameters λ, α, η, φ were estimated by minimising the following sum of
squares:
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Figure 2: Fitted (+) and historical (◦) cross-correlations against distance

SS =
(
1− ν

ν̂

)2

+

(
1− ν̂

ν

)2

+

(
1− ρ

ρ̂

)2

+

(
1− ρ̂

ρ

)2

+ (9)

(
1− κ

κ̂

)2

+

(
1− κ̂

κ

)2

+
∑

(x,y)∈A

[(
1− ρx,y

ρ̂x,y

)2

+

(
1− ρ̂x,y

ρx,y

)2
]

where A is the set of (15) pairs of points corresponding to the locations of the 6
sites.

Using the pooled sample mean, θ can then be estimated directly from:

θ̂ =

{
µ̂5η̂

λ̂Γ(1 + 1/α̂)

}α̂

(10)

Using the above procedure, the following parameter estimates were obtained
for the Auckland data: λ̂ = 0.0721/min, η̂ = 0.838/min, φ̂ = 0.407/km, α̂ = 0.673,
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Table 1: Fitted Statistics

Statistic Sample Value Fitted Value
Mean 0.0708 0.0708

Standard Deviation 3.69 3.77
Skewness 8.95 10.1

Autocorrelation 0.138 0.151

and θ̂ = 0.123mm/min. The sample and fitted statistics are shown in Table 1 and
Figure 2, where it can be seen a reasonable fit is obtained, but with a slight over-
estimation of skewness and autocorrelation (Table 1). There was also some slight
under-estimation of the sample cross-correlations for those sites having the greater
spatial separation (Figure 2). However, given that these discrepancies were only
slight and that a very parsimonious model parametrization had been used, no further
improvement in fit was sought.

5 Disaggregation Algorithm

There are many possible implementations of the stochastic model in §3 which would
enable the disaggregation of rainfall data. The approach adopted here attempts
to reduce computional demands. Disaggregation is carried out for each wet hour
by applying an algorithm which is summarised below; a schematic summary of the
algorithm is given in Figure 3.

Constants:

N Number of sites (6).
NH Number of hours to disaggregate.
M Number of intervals in each hour (12 for five-minute data).
XTOL Tolerance parameter (0.5mm).
WTH Width of catchment (50km; the catchment is treated

as a square of area WTH2).

Variables:
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H A counter for the hour being disaggregated.
Z(i, j, k) Simulated data in the kth (five-minute) interval for the jth hour

in an adjacent pair (j = 1, 2) at the ith site (N × 2×M array).
Y (i, j, k) Simulated data, due to a single rain cell, in the kth (five-minute)

interval for the jth hour in an adjacent pair (j = 1, 2) at ith site
(N × 2×M array).

T (i, j) Total historical rainfall in the jth hour at the ith site
(array of size N × (NH + 1)).

G(i, j) Simulated total rainfall in the jth hour of an adjacent pair (j = 1, 2)
at the ith site (array of size N × 2).

A(i) Scaling factor for each site.
S Starting time of a rain cell.
L Lifetime of a rain cell.
W Intensity of a rain cell.
X x-coordinate for the centre of a rain cell.
Y y-coordinate for the centre of a rain cell.

Initialise:

Z(i, j, k) = 0 i = 1, . . . , N ; j = 1, 2; k = 1, . . . ,M .
Y (i, j, k) = 0 i = 1, . . . , N ; j = 1, 2; k = 1, . . . ,M .
G(i, j) = 0 i = 1, . . . , N ; j = 1, 2.
T (i, NH + 1) = 0 i = 1, . . . , N .
H = 0.

Algorithm:

1. Read in the hourly totals T (i, j) for each site (i = 1, . . . , N ; j = 1, . . . , NH).

2. Set H = H + 1. If H = NH + 1 terminate the algorithm.

3. Set Z(i, 1, k) = Z(i, 2, k) for i = 1, . . . , N ; k = 1, . . . ,M . (The five-minute
series in the first hour is set to zero plus the rain due to previous overlapping
cells.)

4. Set Z(i, 2, k) = 0 for i = 1, . . . , N ; k = 1, . . . ,M . (The five-minute series in
the second hour is set to zero.)

5. Set Y (i, j, k) = 0 for i = 1, . . . , N ; j = 1, 2; k = 1, . . . ,M . (The five-minute
series due to a single cell starts as zero.)

6. Generate variables for a rain cell:

(a) A starting time S taken from a uniform distribution over the interval
(0, M), i.e. S ∼ U(0, M).

(b) A cell lifetime, L ∼ exp(η̂).

(c) A cell intensity, W ∼ weibull(α̂, θ̂).
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(d) A cell radius, R ∼ exp(φ̂).

(e) A cell centre, (X, Y );
X ∼ U(−WTH/2, WTH/2), Y ∼ U(−WTH/2, WTH/2).

7. Calculate a simulated series Y (i, j, k) at each site due to the generated rain
cell (i = 1, . . . , N ; j = 1, 2; k = 1, . . . ,M). Note that the cell contributes to
the simulated series for the ith site if, and only if, the distance from the cell
centre to the site is less than (or equal to) the cell radius R. In addition, note
that the starting time S ≤ M of the cell occurs in the first hour (j = 1) but
the cell may overlap into the next hour (j = 2).

8. Aggregate the simulated (five-minute) series to a pair of hourly totals G(i, j):
Set G(i, j) =

∑M
k=1 Y (i, j, k) for i = 1, . . . , N, j = 1, 2.

9. If the either of the resultant pair of hourly totals (j = 1, 2) obtained by
adding the series G(i, j) to the hourly total

∑M
k=1 Z(i, j, k), exceed either of

the historical hourly totals T (i, H) or T (i, H +1) (to within XTOL; excluding
H+1 when H = HT ) at any site, then discard the generated cell and return to
step 5; i.e. return to step 5 if G(i, j)+

∑M
k=1Z(i, j, k)−T (i, H−1+j) > XTOL

for any site i or any j = 1, 2.

10. Update the simulated (five-minute) series Z(i, j, k) at each site by adding
Y (i, j, k), i.e. set Z(i, j, k) = Z(i, j, k) + Y (i, j, k) for all i and j = 1, 2.

11. Repeat steps 5–10 until until the hourly series T (i, H) and the aggregated
simulated (five-minute) series (

∑M
k=1 Z(i, 1, k)) are closely matched at each

site, i.e. repeat steps 5–10 until |
∑M

k=1 Z(i, 1, k) − T (i, H)| < XTOL for all
i = 1, . . . , N .

12. Scale the simulated (five-minute) series to achieve an exact match to the hourly
data: Set Z(i, 1, k) = A(i)Z(i, 1, k) where A(i) = T (i, H)/

∑M
k=1 Z(i, 1, k).

13. Save the disaggregated data Z(i, 1, k) to a file.

In the above algorithm, cells are generated over the catchment area WTH2. This
area is chosen to be larger than the actual drainage area being studied to allow for
cells that may have centres outside the drainage area but which overlap the drainage
area.

The algorithm does not use λ̂ and therefore introduces a small bias due to dis-
carding larger rain cells. A more precise algorithm involves repeatedly simulating
a random number of cells over the catchment using λ̂ until a close match to the
hourly totals at each site is obtained. However, as this was computationally too
demanding, the above algorithm was adopted for its practicality.
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Figure 3: Flow diagram of stochastic disaggregation algorithm

6 Model Validation

The historical five-minute series were aggregated to hourly series. These hourly
series were then disaggregated to five-minute series using the fitted stochastic model
and the disaggregation algorithm.

To verify the disaggregation algorithm, and to assess the bias, sample standard
deviations of the simulated five-minute series were compared with the standard
deviations of the historical five-minute series at each site (Table 2). A slight under-
estimation is apparent, which is likely to be due to the tendency for the retention
of smaller cells to achieve a match to the hourly totals (Table 2). However, as the
bias is only small, the fitted model and implementation were retained for further
validation against properties of interest in the intended application.

To validate the model for the intended application, the historical five-minute
rainfall time series were input into the pipe network model (Figure 1) and the
spill volumes from each of 236 overflows calculated for each year. In addition, the
stochastically disaggregated (simulated) five-minute series was also input into the
same network model and the overflow volumes resulting from these series also found
for each year. This resulted in 236 spill volumes for each year for both the historical
and simulated five-minute rainfall series. Summary statistics for these series are
given in Table 3, from which it is evident that the disaggregated series produces
results comparable to the historical series.
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Table 2: Standard Deviation of Five-Minute Rainfall Series

Site Historical Series Disaggregated Series

1 0.0989 0.0965
2 0.109 0.102
3 0.108 0.0991
4 0.0974 0.0930
5 0.108 0.0986
6 0.104 0.0974

Table 3: Overflow Statistics (m3 per year)

Statistic Historical Series Disaggregated Series

Largest 4.007× 105 4.088× 105

Second Largest 1.693× 105 1.686× 105

Mean 1.358× 103 1.379× 103

Standard Deviation 1.132× 104 1.160× 104

The null hypothesis that there was no difference between spill volumes generated
from the historical series and those generated from the simulated (disaggregated)
series was tested using a paired sample t-test on the data for the 236 overflows for
the 7-year period (a total of 1652 pairs of differences). The mean difference in spill
volumes was 21.1m3, with a corresponding p-value of 0.19 indicating that there was
no statistical evidence for a difference in spill volumes due to the historical and
simulated rainfall data.

A Kolmogorov-Smirnov (KS) test was used to compare the historical and simu-
lated distributions of overflow volumes for each year (i.e. 7 KS tests, one for each
year). Each KS test gave a non-significant p-value, with the worst fit (for 1997)
having smallest p-value of 0.73, which is not statistically significant. In addition,
when combining the overflow volumes for all the years together, the KS p-value was
0.26, which is also not significant. Consequently, there was no statistical evidence
to reject the null hypothesis that the historical and simulated overflow distributions
were the same, providing good support for the use of the stochastic model in the
Auckland catchment study. A quantile plot, excluding the largest two values which
are in Table 3, is given in Figure 4, from which it is clear that the simulated overflow
distribution closely fits the overflow distribution due to historical rainfall data.
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Figure 4: Quantile plot for historical and simulated overflow distributions; p-value
of KS test statistic is 0.26.

7 Conclusions

The results in §6 indicate that the stochastic model and disaggregation algorithm
can be used with confidence for the intended application, as there were no significant
differences between the historical and simulated overflow distributions.

There is scope for improving the disaggregation algorithm through using the
Poisson arrival rate. However, this is computationally demanding and was not
necessary for this application.

The methodology readily extends to the problem of infilling missing values. To
achieve this, the disaggregation algorithm could be modified so that cells are gener-
ated until any available data are approximately matched.

A further development of the methodology would include disaggregating daily
records to hourly records. This issue is currently under investigation.
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