1,935 research outputs found

    Modeling and Model Validation of a Chemical Injection Sprayer System

    Get PDF
    Efficient control strategies can be used to avoid off-target application in the operation of variable rate application sprayers. The main processes involved in the operation of a variable rate application sprayer are the injection of chemical and its mixing with the carrier. Therefore, the objective of this research was to develop mathematical models for a chemical direct injection system (DIS) including the carrier-chemical mix to assist the design and prediction of the variable rate application errors. The modeling of the DIS involves different engineering fields and is based on the physical parameters of the hydraulic and electrical-mechanical components, fluid equations and experimental procedures. The developed models for the chemical DIS were validated via a normalized root mean square error (RMSE) index using a laboratory-scale sprayer test bench built to design sprayers and analyze their performance. These models captured the realistic operation of the chemical injection system including the effect of the transport delay which is dependent on the carrier-chemical mix flow rate. Experimental results of the DIS flow rates and pressure yielded normalized RMSE values lower than 0.4 indicating that the sprayer performance can be efficiently predicted with the developed models. Additionally, experimental curve fitting results for the carrier-chemical mix time constant and transport delay parameters from step changes of the chemical and carrier-chemical flow rates yielded a statistic coefficient of determination R2 close to 1 indicating that these DIS parameters can be efficiently predicted from experimental step responses

    Magnet-sleeve-sealed mini trochoidal-gear pump prototype with polymer composite gear

    Get PDF
    The trochoidal-gear technology has been growing in groundbreaking fields. Forthcoming applications are demanding to this technology a step forward in the conceiving stage of positive displacement machines. The compendium of the qualities and the inherent characteristics of trochoidal-gear technology, especially towards the gerotor pump, together with scale/size factor and magnetic-driven transmission has led to the idea of a magnet-sleeve-sealed variable flow mini trochoidal-gear pump. From its original concept, to the last phase of the design development, the proof of concept, this new product will intend to overcome problems such as noise, vibration, maintenance, materials, and dimensions. The paper aims to show the technological path followed from the concept, design, and model, to the manufacture of the first prototype, where the theoretical and numerical approaches are not always directly reflected in the prototype performance results. Early in the design process, from a standard-commercial sintered metal mini trochoidal-gear unit, fundamental characteristics and dimensional limitations have been evaluated becoming the strategic parameters that led to its configuration. The main technical challenge to confront is being sealed with non-exterior driveshaft, ensuring that the whole interior is filled and wetted with working fluid and helping the hydrodynamic film formation, the pumping effect, and the heat dissipation. Subsequently, the mini pump architecture, embodiment, methodology, materials, and manufacture are presented. The trend of applications of polymer composite materials and their benefits wanted to be examined with this new mini pump prototype, and a pure polyoxymethylene mini trochoidal-gear set has been designed and manufactured. Finally, both the sintered and the polymer trochoidal-gear units have been experimentally tested in an in-house full-instrumented mini test bench. Although the main goal of the presented work is the development of a new mini trochoidal-gear pump prototype rather than a numerical study, the results have been compared with numerical simulation. Subsequently, the prototype of the mini trochoidal-gear pump is a feasible proof of concept supported by functional indexes and the experimental results.Peer ReviewedPostprint (published version

    Nonlinear observers for burning zone temperatures and torque estimation of the rotary cement kiln.

    Get PDF
    Due to consistent expansion in the infrastructure and housing sectors worldwide have given a new way for the rapid growth of global cement market. Increased global demand for the cement production makes the attractive research topic which can lead to the quality and overall efficiency of the product. Measurement of the temperature in the burning zone is vital to maintain product quality and kiln efficiency in the cement industry. Often the BZT is un-measurable due to internal kiln conditions, dusty environment, extreme heat, harshness for example and this leads to kiln not being driven as efficient as possible. Multi-physics tools are core to modern engineering, and smart manufacturing, but have not been extensively utilized in this low-cost industry, hence proposed approach is to find a reduced ordered model (ROM) of the thermodynamics of the kiln using data centric approach along with Multiphysics tool

    THROTTLE-BY-WIRE (TBW) FOR RETROFIT CONVERSION OF HYBRID ELECTRIC VEHICLE (HEV) USING NI COMPACT RIO & LABVIEW

    Get PDF
    Conventional throttle body in a vehicle is controlled mechanically via cable and this project propose a method for replacing the conventional throttle body with an electronic throttle body (ETB) and fine-tune the system in order to implement electronic throttle-by-wire (TBW) for retrofit conversion of hybrid electric vehicle (HEV) to enable diligent control of throttle valve by using National Instrument’s compact Reconfigurable Input Output (cRIO) hardware and Laboratory Instrumentation Engineering Workbench (LabVIEW) graphical user interface (GUI)

    GeroMAG: in-house prototype of an innovative sealed, compact and non-shaft-driven gerotor pump with magnetically-driving outer rotor

    Get PDF
    The technology of gerotor pumps is progressing towards cutting-edge applications in emerging sectors, which are more demanding for pump performance. Moreover, recent environmental standards are heading towards leakage-free and noiseless hydraulic systems. Hence, in order to respond to these demands, this study, which will be referred to as the GeroMAG concept, aims to make a leap from the standard gerotor pump technology: a sealed, compact, non-shaft-driven gerotor pump with a magnetically-driving outer rotor. The GeroMAG pump is conceived as a variable-flow pump to accomplish a standard volumetric flow rate at low rotational speed with satisfactory volumetric efficiency. By following the authors’ methodology based on a catalogue of best-practice rules, a custom trochoidal gear set is designed. Then, two main technological challenges are encountered: how to generate the rotational movement of the driving outer rotor and how to produce the guide of rotation of the gear set once there is no drive shaft. To confront them, a quiet magnet brushless motor powers the driving outer rotor through pole pieces placed in its external sideway and the rotational movement is guided by the inner edgewise pads carved on it. Subsequently, GeroMAG pump architecture, prototype, housing, methodology, materials and manufacture will be presented. As a principal conclusion, the GeroMAG proof of concept and pump prototype are feasible, which is corroborated by experimental results and performance indexes.Peer ReviewedPostprint (published version

    Maximizing Vanadium Redox Flow Battery Efficiency: Strategies of Flow Rate Control

    Get PDF
    Vanadium redox flow batteries (VRFBs) are one of the most promising technologies for large-scale energy storage due to their flexible energy and power capacity configurations. The energy losses evaluation assumes a very important rule on the VRFB characterization in order increase the efficiency of the battery. Very few papers describe the relations between hydraulic, electrical and chemical contributions to the system energy losses, especially in a large size VRFB system. In the first part a fluid dynamics characterization of a 9kW / 27 kWh VRFB test facility has been conducted. In particular, we will consider the internal resistance as the sum of an ohmic and a transport resistance. Secondly, an overall loss assessment based on both numerical and experimental results has been carried out. Finally, some improvements in the battery management strategy and in stack engineering are proposed, that results from this work and can help the future designer to develop more efficient VRFB stack with a compact design

    磁性流体を用いたバックドライブ可能な油圧アクチュエータの開発

    Get PDF
    早大学位記番号:新7478早稲田大
    corecore