16 research outputs found

    An efficient Monte Carlo approach for optimizing decentralized estimation networks constrained by undirected topologies

    Get PDF
    We consider a decentralized estimation network subject to communication constraints such that nearby platforms can communicate with each other through low capacity links rendering an undirected graph. After transmitting symbols based on its measurement, each node outputs an estimate for the random variable it is associated with as a function of both the measurement and incoming messages from neighbors. We are concerned with the underlying design problem and handle it through a Bayesian risk that penalizes the cost of communications as well as estimation errors, and constraining the feasible set of communication and estimation rules local to each node by the undirected communication graph. We adopt an iterative solution previously proposed for decentralized detection networks which can be carried out in a message passing fashion under certain conditions. For the estimation case, the integral operators involved do not yield closed form solutions in general so we utilize Monte Carlo methods. We achieve an iterative algorithm which yields an approximation to an optimal decentralized estimation strategy in a person by person sense subject to such constraints. In an example, we present a quantification of the trade-off between the estimation accuracy and cost of communications using the proposed algorithm

    İletişim kısıtları altında dağıtık rasgele-alan kestirimi (Decentralized random-field estimation under communication constraints)

    Get PDF
    We consider the problem of decentralized estimation of a random-field under communication constraints in a Bayesian setting. The underlying system is composed of sensor nodes which collect measurements due to random variables they are associated with and which can communicate through finite-rate channels in accordance with a directed acyclic topology. After receiving the incoming messages if any, each node evaluates its local rule given its measurement and these messages, producing an estimate as well as outgoing messages to child nodes. A rigorous problem definition is achieved by constraining the feasible set through this structure in order to optimize a Bayesian risk function that captures the costs due to both communications and estimation errors. We adopt an iterative solution through a Team Decision Theoretic treatment previously proposed for decentralized detection. However, for the estimation problem, the iterations contain expressions with integral operators that have no closed form solutions in general. We propose approximations to these expressions through Monte Carlo methods. The result is an approximate computational scheme for optimization of distributed estimation networks under communication constraints. In an example scenario, we increase the price of communications and present the degrading estimation performance of the converged rules

    Distributed Quantization for Sparse Time Sequences

    Full text link
    Analog signals processed in digital hardware are quantized into a discrete bit-constrained representation. Quantization is typically carried out using analog-to-digital converters (ADCs), operating in a serial scalar manner. In some applications, a set of analog signals are acquired individually and processed jointly. Such setups are referred to as distributed quantization. In this work, we propose a distributed quantization scheme for representing a set of sparse time sequences acquired using conventional scalar ADCs. Our approach utilizes tools from secure group testing theory to exploit the sparse nature of the acquired analog signals, obtaining a compact and accurate representation while operating in a distributed fashion. We then show how our technique can be implemented when the quantized signals are transmitted over a multi-hop communication network providing a low-complexity network policy for routing and signal recovery. Our numerical evaluations demonstrate that the proposed scheme notably outperforms conventional methods based on the combination of quantization and compressed sensing tools

    Decentralized Estimation over Orthogonal Multiple-access Fading Channels in Wireless Sensor Networks - Optimal and Suboptimal Estimators

    Get PDF
    Optimal and suboptimal decentralized estimators in wireless sensor networks (WSNs) over orthogonal multiple-access fading channels are studied in this paper. Considering multiple-bit quantization before digital transmission, we develop maximum likelihood estimators (MLEs) with both known and unknown channel state information (CSI). When training symbols are available, we derive a MLE that is a special case of the MLE with unknown CSI. It implicitly uses the training symbols to estimate the channel coefficients and exploits the estimated CSI in an optimal way. To reduce the computational complexity, we propose suboptimal estimators. These estimators exploit both signal and data level redundant information to improve the estimation performance. The proposed MLEs reduce to traditional fusion based or diversity based estimators when communications or observations are perfect. By introducing a general message function, the proposed estimators can be applied when various analog or digital transmission schemes are used. The simulations show that the estimators using digital communications with multiple-bit quantization outperform the estimator using analog-and-forwarding transmission in fading channels. When considering the total bandwidth and energy constraints, the MLE using multiple-bit quantization is superior to that using binary quantization at medium and high observation signal-to-noise ratio levels

    Monte Carlo optimization of decentralized estimation networks over directed acyclic graphs under communication constraints

    Get PDF
    Motivated by the vision of sensor networks, we consider decentralized estimation networks over bandwidth–limited communication links, and are particularly interested in the tradeoff between the estimation accuracy and the cost of communications due to, e.g., energy consumption. We employ a class of in–network processing strategies that admits directed acyclic graph representations and yields a tractable Bayesian risk that comprises the cost of communications and estimation error penalty. This perspective captures a broad range of possibilities for processing under network constraints and enables a rigorous design problem in the form of constrained optimization. A similar scheme and the structures exhibited by the solutions have been previously studied in the context of decentralized detection. Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this framework for estimation, however, the corresponding optimization scheme involves integral operators that cannot be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain particle representations and approximate computational schemes for both the in–network processing strategies and their optimization. The proposed Monte Carlo optimization procedure operates in a scalable and efficient fashion and, owing to the non-parametric nature, can produce results for any distributions provided that samples can be produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy asymptotically as the communication becomes more costly, through a parameterized Bayesian risk

    Adaptive quantization in wireless sensor networks with encryption

    Get PDF
    We consider the estimation of a deterministic unknown parameter in an encrypted wireless sensor networks. Adaptive quantization is used on the sensor\u27s observation and the outputs of the sensors are then encrypted using a probabilistic cipher. In a conventional fixed quantization scheme, estimation error grows exponentially with the difference between the threshold and the unknown parameter to be estimated. Hence, to avoid this, we used and adaptive quantization scheme where each sensor adaptively adjusts its quantization threshold. We find the Cramer-Rao Lower Bound for the Ally Fusion Center (AFC) and then find the optimal estimate of the unknown parameter for the AFC. To find this, we first prove that the sequence of thresholds used for the quantization process forms a markov chain and that this chain is recurrent non-null and thus has a stationary distribution. This distribution is then obtained analytically in closed form as well as through numerical methods. The optimal estimate of the unknown parameter for the AFC is obtained asymptotically in the number of sensors. The performance of the Third Party Fusion Center (TPFC) is only computed through simulation and compared to that of AFC
    corecore