2,204 research outputs found

    Green underwater wireless communications using hybrid optical-acoustic technologies

    Get PDF
    Underwater wireless communication is a rapidly growing field, especially with the recent emergence of technologies such as autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs). To support the high-bandwidth applications using these technologies, underwater optics has attracted significant attention, alongside its complementary technology – underwater acoustics. In this paper, we propose a hybrid opto-acoustic underwater wireless communication model that reduces network power consumption and supports high-data rate underwater applications by selecting appropriate communication links in response to varying traffic loads and dynamic weather conditions. Underwater optics offers high data rates and consumes less power. However, due to the severe absorption of light in the medium, the communication range is short in underwater optics. Conversely, acoustics suffers from low data rate and high power consumption, but provides longer communication ranges. Since most underwater equipment relies on battery power, energy-efficient communication is critical for reliable underwater communications. In this work, we derive analytical models for both underwater acoustics and optics, and calculate the required transmit power for reliable communications in various underwater communication environments. We then formulate an optimization problem that minimizes the network power consumption for carrying data from underwater nodes to surface sinks under varying traffic loads and weather conditions. The proposed optimization model can be solved offline periodically, hence the additional computational complexity to find the optimum solution for larger networks is not a limiting factor for practical applications. Our results indicate that the proposed technique yields up to 35% power savings compared to existing opto-acoustic solutions

    Green underwater wireless communications using hybrid optical-acoustic technologies

    Get PDF
    Underwater wireless communication is a rapidly growing field, especially with the recent emergence of technologies such as autonomous underwater vehicles (AUVs) and remotely operated vehicles (ROVs). To support the high-bandwidth applications using these technologies, underwater optics has attracted significant attention, alongside its complementary technology - underwater acoustics. In this paper, we propose a hybrid opto-acoustic underwater wireless communication model that reduces network power consumption and supports high-data rate underwater applications by selecting appropriate communication links in response to varying traffic loads and dynamic weather conditions. Underwater optics offers high data rates and consumes less power. However, due to the severe absorption of light in the medium, the communication range is short in underwater optics. Conversely, acoustics suffers from low data rate and high power consumption, but provides longer communication ranges. Since most underwater equipment relies on battery power, energy-efficient communication is critical for reliable underwater communications. In this work, we derive analytical models for both underwater acoustics and optics, and calculate the required transmit power for reliable communications in various underwater communication environments. We then formulate an optimization problem that minimizes the network power consumption for carrying data from underwater nodes to surface sinks under varying traffic loads and weather conditions. The proposed optimization model can be solved offline periodically, hence the additional computational complexity to find the optimum solution for larger networks is not a limiting factor for practical applications. Our results indicate that the proposed technique yields up to 35% power savings compared to existing opto-acoustic solutions. © 2013 IEEE

    A Hierarchical Communication Architecture for Oceanic Survelliance Applications

    Get PDF
    The interest in monitoring applications using underwater sensor networks has been growing in recent years. The severe communication restrictions imposed by underwater channels make that efficient monitoring be a challenging task. Though a lot of research has been conducted on underwater sensor networks, there are only few concrete applications to a real-world case study. In this work, hence, we propose a general three tier architecture leveraging low cost wireless technologies for acoustic communications between underwater sensors and standard technologies, Zigbee and Wireless Fidelity (WiFi), for water surface communications. We have selected a suitable Medium Access Control (MAC) layer, after making a comparison with some common MAC protocols. Thus the performance of the overall system in terms of Signals Discarding Rate (SDR), signalling delay at the surface gateway as well as the percentage of true detection have been evaluated by simulation, pointing out good results which give evidence in applicability’s favour
    • …
    corecore