105,169 research outputs found

    Integration of miniature, ultrasensitive chemical sensors in microfluidic devices

    Get PDF
    Simple construction, good detection limit1, very low power demand, and simple experimental setup coupled with miniaturization opportunities arising from solid-state format makes ISEs an excellent prospect for integration in autonomous sensing devices and ultimately their integration in large wireless chemo-sensing networks.2,3 Microfluidics, also known as “lab-on-a-chip” is an emerging technology that is changing the future of instrument design. Microfluidics enables small scale fluid control and analysis, allowing developing smaller, more cost-effective, and more powerful systems.4,5,6 We are working on development of miniature devices featuring sensitive yet simple sensors that could enable rapid access to important environmental information from in-situ deployed sensors, and thereby facilitate timely action to minimize the adverse impact of emerging incidents. Our work involves integration of ultra-sensitive yet simple chemical sensors into a microfluidic device that has integrated wireless communications capabilities. Our ultimate objective is to develop a microfluidic chip that will incorporate polymer-based lead-selective solid-state electrodes. We will test the series of developed chips for the best design to accommodate these sensors. Initially, we are targeting lead-selective sensors and their application to the monitoring of drinking and natural water quality. Our ultimate vision is the development of a microfluidic-based platform with fully integrated screen-printed solid-state ISEs, and the associated reference electrode, which will be suitable for use as a chemo-sensing component in a widely distributed wireless sensor network (WSN) for monitoring the quality of a fresh water system. A key challenge in the realization of this vision is to build in advanced system diagnostics, and particular, sensor status tests using simple electronic signals, in a manner similar to those used in physical transducers.7 In this way, it may be possible to assist in distinguishing sensor malfunction or signal artifacts from real events, even in relatively simple, low cost platforms

    Commercialisation of an autonomous phosphate analyser

    Get PDF
    Environmental legislation such as the EU Water Framework Directive is providing a significant impetus towards increased monitoring of natural waters. The widespread availability of autonomous, field deployable systems which can provide long-term, reliable, high frequency data on key water quality parameters via wireless communications would allow a significant improvement in our ability to monitor the quality of our natural water resources. An autonomous sensor for the analysis of a key nutrient, phosphate, in water has been developed by National Centre for Sensor Research (NCSR) researchers in Dublin City University. This sensor incorporates microfluidic technology, colorimetric chemical detection, and wireless communications into a compact and rugged portable device. The prototype system has been successfully deployed for extended periods at Osberstown Wastewater Treatment Plant, Co. Kildare, and at Swords Estuary, Co. Dublin to monitor phosphate levels over periods of up to several months. Current work is focused on the commercialisation of the prototype phosphate analyser. This work is being performed in collaboration with EpiSensor Ltd., a Limerick based SME with expertise in wireless communications, sensor design and data collection systems. The next generation phosphate system will be linked with EpiSensor’s reliable and secure ‘sensor to database’ or SiCA platform. All major components of the analyser have been evaluated and redesigned with a view to reducing cost, power consumption and size, while maintaining sensor accuracy and reliability. The commercial system mass and internal volume have both been reduced by a factor of 7 compared with the prototype system, while component costs have been reduced by a factor of 10. GSM communications on the prototype were replaced with EpiSensors ultra low power ZigBee radio. The system uses 20ÎŒl of reagent per reaction cycle and can carry out approximately 1400 measurements using a single lithium battery. The result is a low cost, low power and portable phosphate analyser. The system has been successfully deployed for short term trials at Swords Estuary, Co. Dublin

    Distributed environmental monitoring

    Get PDF
    With increasingly ubiquitous use of web-based technologies in society today, autonomous sensor networks represent the future in large-scale information acquisition for applications ranging from environmental monitoring to in vivo sensing. This chapter presents a range of on-going projects with an emphasis on environmental sensing; relevant literature pertaining to sensor networks is reviewed, validated sensing applications are described and the contribution of high-resolution temporal data to better decision-making is discussed

    Development and deployment of a microfluidic platform for water quality monitoring

    Get PDF
    There is an increasing demand for autonomous sensor devices which can provide reliable data on key water quality parameters at a higher temporal and geographical resolution than is achievable using current approaches to sampling and monitoring. Microfluidic technology, in combination with rapid and on-going developments in the area of wireless communications, has significant potential to address this demand due to a number of advantageous features which allow the development of compact, low-cost and low-powered analytical devices. Here we report on the development of a microfluidic platform for water quality monitoring. This system has been successfully applied to in-situ monitoring of phosphate in environmental and wastewater monitoring applications. We describe a number of the technical and practical issues encountered and addressed during these deployments and summarise the current status of the technology

    In situ monitoring of environmental water quality using an autonomous microfluidic sensor

    Get PDF
    An autonomous microfluidic sensor for phosphate in environmental waters has been developed and assessed in laboratory and field trials. The sensor is based on the molybdenum yellow method for phosphate detection in which a phosphate-containing sample is mixed with a reagent containing ammonium molybdate and ammonium metavanadate in an acidic medium. The yellow-colored compound which is formed absorbs strongly below 400nm and its absorbance is proportional to the concentration of phosphate in the original sample. The sensor utilizes a microfluidic manifold where mixing, reaction and detection take place. Optical detection is performed using a LED (light emitting diode) light source and a photodiode detector. The sensor also combines pumping system, power supply, reagent and waste storage, and wireless communications into a compact and portable device. Here we report the successful use of the sensor to monitor phosphate levels in an estuarine environment

    Distributed chemical sensor networks for environmental sensing

    Get PDF
    Society is increasingly accustomed to instant access to real-time information, due to the ubiquitous use of the internet and web-based access tools. Intelligent search engines enable huge data repositories to be searched, and highly relevant information returned in real time. These repositories increasingly include environmental information related to the environment, such as distributed air and water quality. However, while this information at present is typically historical, for example, through agency reports, there is increasing demand for real-time environmental data. In this paper, the issues involved in obtaining data from autonomous chemical sensors are discussed, and examples of current deployments presented. Strategies for achieving large-scale deployments are discussed

    The impact of agricultural activities on water quality: a case for collaborative catchment-scale management using integrated wireless sensor networks

    No full text
    The challenge of improving water quality is a growing global concern, typified by the European Commission Water Framework Directive and the United States Clean Water Act. The main drivers of poor water quality are economics, poor water management, agricultural practices and urban development. This paper reviews the extensive role of non-point sources, in particular the outdated agricultural practices, with respect to nutrient and contaminant contributions. Water quality monitoring (WQM) is currently undertaken through a number of data acquisition methods from grab sampling to satellite based remote sensing of water bodies. Based on the surveyed sampling methods and their numerous limitations, it is proposed that wireless sensor networks (WSNs), despite their own limitations, are still very attractive and effective for real-time spatio-temporal data collection for WQM applications. WSNs have been employed for WQM of surface and ground water and catchments, and have been fundamental in advancing the knowledge of contaminants trends through their high resolution observations. However, these applications have yet to explore the implementation and impact of this technology for management and control decisions, to minimize and prevent individual stakeholder’s contributions, in an autonomous and dynamic manner. Here, the potential of WSN-controlled agricultural activities and different environmental compartments for integrated water quality management is presented and limitations of WSN in agriculture and WQM are identified. Finally, a case for collaborative networks at catchment scale is proposed for enabling cooperation among individually networked activities/stakeholders (farming activities, water bodies) for integrated water quality monitoring, control and management

    Autonomous monitoring framework for resource-constrained environments

    Get PDF
    Acknowledgments The research described here is supported by the award made by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub, reference: EP/G066051/1. URL: http://www.dotrural.ac.uk/RemoteStream/Peer reviewedPublisher PD
    • 

    corecore