80,803 research outputs found

    Reservoir Topology in Deep Echo State Networks

    Get PDF
    Deep Echo State Networks (DeepESNs) recently extended the applicability of Reservoir Computing (RC) methods towards the field of deep learning. In this paper we study the impact of constrained reservoir topologies in the architectural design of deep reservoirs, through numerical experiments on several RC benchmarks. The major outcome of our investigation is to show the remarkable effect, in terms of predictive performance gain, achieved by the synergy between a deep reservoir construction and a structured organization of the recurrent units in each layer. Our results also indicate that a particularly advantageous architectural setting is obtained in correspondence of DeepESNs where reservoir units are structured according to a permutation recurrent matrix

    Reservoir Topology in Deep Echo State Networks

    Full text link
    Deep Echo State Networks (DeepESNs) recently extended the applicability of Reservoir Computing (RC) methods towards the field of deep learning. In this paper we study the impact of constrained reservoir topologies in the architectural design of deep reservoirs, through numerical experiments on several RC benchmarks. The major outcome of our investigation is to show the remarkable effect, in terms of predictive performance gain, achieved by the synergy between a deep reservoir construction and a structured organization of the recurrent units in each layer. Our results also indicate that a particularly advantageous architectural setting is obtained in correspondence of DeepESNs where reservoir units are structured according to a permutation recurrent matrix.Comment: Preprint of the paper published in the proceedings of ICANN 201

    Richness of Deep Echo State Network Dynamics

    Full text link
    Reservoir Computing (RC) is a popular methodology for the efficient design of Recurrent Neural Networks (RNNs). Recently, the advantages of the RC approach have been extended to the context of multi-layered RNNs, with the introduction of the Deep Echo State Network (DeepESN) model. In this paper, we study the quality of state dynamics in progressively higher layers of DeepESNs, using tools from the areas of information theory and numerical analysis. Our experimental results on RC benchmark datasets reveal the fundamental role played by the strength of inter-reservoir connections to increasingly enrich the representations developed in higher layers. Our analysis also gives interesting insights into the possibility of effective exploitation of training algorithms based on stochastic gradient descent in the RC field.Comment: Preprint of the paper accepted at IWANN 201

    Recurrent Equilibrium Networks: Flexible Dynamic Models with Guaranteed Stability and Robustness

    Full text link
    This paper introduces recurrent equilibrium networks (RENs), a new class of nonlinear dynamical models for applications in machine learning, system identification and control. The new model class has ``built in'' guarantees of stability and robustness: all models in the class are contracting - a strong form of nonlinear stability - and models can satisfy prescribed incremental integral quadratic constraints (IQC), including Lipschitz bounds and incremental passivity. RENs are otherwise very flexible: they can represent all stable linear systems, all previously-known sets of contracting recurrent neural networks and echo state networks, all deep feedforward neural networks, and all stable Wiener/Hammerstein models. RENs are parameterized directly by a vector in R^N, i.e. stability and robustness are ensured without parameter constraints, which simplifies learning since generic methods for unconstrained optimization can be used. The performance and robustness of the new model set is evaluated on benchmark nonlinear system identification problems, and the paper also presents applications in data-driven nonlinear observer design and control with stability guarantees.Comment: Journal submission, extended version of conference paper (v1 of this arxiv preprint

    Hierarchical Temporal Representation in Linear Reservoir Computing

    Full text link
    Recently, studies on deep Reservoir Computing (RC) highlighted the role of layering in deep recurrent neural networks (RNNs). In this paper, the use of linear recurrent units allows us to bring more evidence on the intrinsic hierarchical temporal representation in deep RNNs through frequency analysis applied to the state signals. The potentiality of our approach is assessed on the class of Multiple Superimposed Oscillator tasks. Furthermore, our investigation provides useful insights to open a discussion on the main aspects that characterize the deep learning framework in the temporal domain.Comment: This is a pre-print of the paper submitted to the 27th Italian Workshop on Neural Networks, WIRN 201

    Echo State Networks: analysis, training and predictive control

    Full text link
    The goal of this paper is to investigate the theoretical properties, the training algorithm, and the predictive control applications of Echo State Networks (ESNs), a particular kind of Recurrent Neural Networks. First, a condition guaranteeing incremetal global asymptotic stability is devised. Then, a modified training algorithm allowing for dimensionality reduction of ESNs is presented. Eventually, a model predictive controller is designed to solve the tracking problem, relying on ESNs as the model of the system. Numerical results concerning the predictive control of a nonlinear process for pH neutralization confirm the effectiveness of the proposed algorithms for the identification, dimensionality reduction, and the control design for ESNs.Comment: 6 pages,5 figures, submitted to European Control Conference (ECC
    corecore