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Abstract. Deep Echo State Networks (DeepESNs) recently extended
the applicability of Reservoir Computing (RC) methods towards the field
of deep learning. In this paper we study the impact of constrained reser-
voir topologies in the architectural design of deep reservoirs, through
numerical experiments on several RC benchmarks. The major outcome
of our investigation is to show the remarkable effect, in terms of predic-
tive performance gain, achieved by the synergy between a deep reservoir
construction and a structured organization of the recurrent units in each
layer. Our results also indicate that a particularly advantageous architec-
tural setting is obtained in correspondence of DeepESNs where reservoir
units are structured according to a permutation recurrent matrix.

Keywords: Deep Echo State Networks, Deep Reservoir Computing,
Reservoir Topology

1 Introduction

Reservoir Computing (RC) [20,27] delineates a class of Recurrent Neural Net-
work (RNN) models based on the idea of separating the non-linear dynamical
component of the network, i.e. the recurrent hidden reservoir layer, from the
feed-forward linear readout layer. The reservoir is initialized randomly under
stability constraints and then is left untrained, leaving the burden of training
to fall only on the readout part of the architecture, hence resulting in a strik-
ingly efficient approach to RNN design. In this context, the Echo State Network
(ESN) model [17,15] is a popular realization of the RC paradigm based on imple-
menting the reservoir in terms of a discrete-time non-linear dynamical system.
Being featured by untrained dynamics, ESNs represent an important tool to
understand and characterize the operation and potentialities of recurrent neural
models. Shaping the reservoir architecture in order to achieve desired properties
and optimized performance in applications, even in the absence of training of
the recurrent connections, is one of the key goals of RC research [8].

In this paper we bring together two major trends in the area of ESN archi-
tectural studies. The first one focuses on the pattern of connectivity among the
recurrent units. In this case, the aim is to constrain the random reservoir initial-
ization process towards topologies that determine specific algebraic properties

http://arxiv.org/abs/1909.11022v1
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of the resulting recurrent weight matrices. A relevant class of reservoir vari-
ants in this regard is given by ESNs with orthogonal recurrent matrices [29,14],
which were shown to lead to improved performance with respect to random
reservoirs both in terms of memorization skills and in terms of predictive perfor-
mance on non-linear tasks. In particular, reservoirs whose structure is based on
permutation matrices represent particularly appealing instances of orthogonal
ESNs [14,25], entailing a simple and very sparse pattern of connectivity among
the recurrent units. Other relevant architectural variants are given by reservoirs
structured according to a ring topology or to form a chain of units [23,25]. The
second major line of research that we consider regards the construction of hierar-
chically structured reservoir models. While initial studies in this context focused
on composing multiple ESN modules to form ad-hoc architectures [18,26], recent
works started analyzing the effects of stacking multiple untrained reservoir layers
with the introduction of the DeepESN model [7]. On the one hand, the anal-
ysis of DeepESN dynamics contributes to uncover the intrinsic computational
properties of deep neural networks in the temporal domain [7,12]. On the other
hand, a proper architectural design of deep reservoirs might have a huge impact
in real-world applications [11], enabling effective multiple time-scales processing
and at the same time preserving the training efficiency typical of RC models.

In this paper we analyze the impact on the predictive performance given
by a constrained reservoir topology in DeepESNs. Specifically, we consider deep
architectures in which the individual reservoir layers are implemented based on
permutation matrices, as well as on ring and on chain topologies. Our study is
conducted in comparison to shallow ESN counterparts through numerical exper-
iments on several benchmarks in the RC area.

The rest of this paper is structured as follows. The DeepESN model is intro-
duced in Section 2, while the investigated reservoir topologies are described in
Section 3. The experimental analysis is reported in Section 4. Finally, Section 5
draws conclusions and delineates future research directions.

2 Deep Echo State Networks

A DeepESN is an RC model in which the reservoir part is organized into a
stacked composition of multiple untrained recurrent hidden layers. The external
input is propagated only to the first reservoir layer, while each successive level
in the deep architecture is fed by the output of the previous one, as graphically
illustrated in Figure 1.

To fix our notation, we use L to indicate the number of layers in the deep
reservoir, while NU and NY respectively denote the sizes of input and output
spaces. For the sake of simplicity in the presentation of the DeepESN model,
here we make the assumption that all the reservoir layers are featured by the
same number of units, indicated by NR. The operation of each reservoir layer
can be described in terms of a discrete-time non-linear dynamical system, whose
state update equation is given in the form of an iterated mapping. In particular,
at time-step t, the state of the first layer, i.e. x(1)(t) ∈ R

NR , is computed as



Reservoir Topology in Deep Echo State Networks 3

✞✒�✁

✂☛✄

☎ ✆ ✒�✁

✌✂
✝✟✠

✡
☞✍✎

☎ ✏ ✒�✁

✌✂
✝✑✠

✡
☞✓✎

☎ ✔ ✒�✁

✌✂
✝✕✠

☎ ✔✖✆ ✒�✁

✂
☞✗✎

1st reservoir 

layer

2nd reservoir 

layer

L-th reservoir 

layer

...

...

Fig. 1. Hierarchical reservoir architecture in a DeepESN.

follows:

x(1)(t) = tanh(Winu(t) + Ŵ(1)x(1)(t− 1)), (1)

while the state of each successive layer l > 1, i.e. x(l)(t) ∈ R
NR , is given by:

x(l)(t) = tanh(W(l)x(l−1)(t) + Ŵ(l)x(l)(t− 1)). (2)

Here, tanh indicates the element-wise application of the hyperbolic tangent non-
linearity, u(t) ∈ R

NU represents the external input at time-step t, while Win,

W(l) and Ŵ(l) respectively denote the input weight matrix (that modulates
the external input stimulation to the first layer), the inter-layer weight matrix
for layer l (that modulates the strength of the connections from layer l − 1
to layer l), and the recurrent reservoir weight matrix for layer l. In both the
above equations 1 and 2 we omitted the bias terms for the ease of notation. The
interested reader can find in [7] a more detailed description of the deep reservoir
equations, framed in the more general context of leaky integrator reservoir units.
In order to set up initial conditions for the state update equations 1 and 2, at
time-step 0 all reservoir layers are set to a null state, i.e. x(l)(0) = 0 for all
l = 1, . . . , L. Given this framework, it is worth noticing that a standard shallow
ESN model can be seen as a special case of DeepESN in which a single reservoir
layer is considered, i.e. L = 1.

As in standard RC approaches, the parameters of the entire reservoir com-
ponent, i.e. the elements in all the weight matrices in equations 1 and 2, are
left untrained after initialization subject to stability constraints. These are re-
quired to avoid the system dynamics to fall into unstable regimes, which would
make them unsuitable for robust processing of time-series data. In the context
of ESNs, the analysis of asymptotic stability is usually described in terms of the
Echo State Property (ESP) [15,20], providing simple algebraic conditions for the
initialization of reservoir weight matrices that have been recently extended to
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cope with the case of deep reservoirs in [5]. Under a practical view-point, the
analysis in [5] suggests to carefully control the spectral radius of all the reservoir
weight matrices in the deep reservoir. In this paper, we use ρ(l) to denote the
spectral radius in layer l, i.e. the largest among the absolute values of the eigen-
values of Ŵ(l). A simple initialization procedure for the reservoir of a DeepESN
then consists in choosing the elements in Ŵ(l) randomly from a uniform distri-
bution on [−1, 1], subsequently re-scaling them to achieve desired values of ρ(l),
typically not above unity. Similarly, the elements in Win and those in W(l) (for
l > 1) are initialized randomly from a uniform distribution on [−1, 1], and then
are re-scaled to control the input scaling hyper-parameter ωin = ‖Win‖2, and

the set of inter-layer scaling hyper-parameters ω
(l)
il = ‖W(l)‖2.

The output of the DeepESN is computed by a simple readout tool, which
linearly combines the reservoir representations developed in all the layers of the
deep architecture. In formulas, the output at time-step t, denoted as y(t) ∈ R

NY ,
is computed by the following equation:

y(t) = Wout [x
(1)(t); . . . ;x(L)(t)], (3)

where Wout is the output weight matrix, and [x(1)(t); . . . ;x(L)(t)] represents
the global deep reservoir state at time-step t, expressed as the concatenation
of all the states in the architecture. The elements in Wout represent the only
learnable weights of the DeepESN, and are typically adjusted to fit a training
set by exploiting non-iterative training algorithms as in the case of standard
RC models [20]. Notice that, although different patterns of reservoir-to-readout
connectivity are possible [22], the one employed here, where all reservoir layers
are used to feed the readout, has the advantage to allow the training algorithms
to modulate and exploit differently the variety of representations provided by
the different levels in the deep architecture.

A more comprehensive description of the characteristics and advantages of
the DeepESN approach can be found in [6], while a constantly updated overview
on the advancements achieved in this research field is given in [9]. To date,
software implementations of the DeepESN model are made publicly available as
libraries for Python1, Matlab2 and Octave3.

3 Reservoir Topology

We consider DeepESN architectural variants where the recurrent weight matrix
in each layer l, i.e. Ŵ(l), is characterized by a specific structure, according to
the topologies described in the following. The resulting patterns of reservoir
connectivity are graphically exemplified in Figure 2.

1 https://github.com/lucapedrelli/DeepESN
2 https://it.mathworks.com/matlabcentral/fileexchange/69402-deepesn
3 https://github.com/gallicch/DeepESN_octave

https://github.com/lucapedrelli/DeepESN
https://it.mathworks.com/matlabcentral/fileexchange/69402-deepesn
https://github.com/gallicch/DeepESN_octave
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Fig. 2. Reservoir topologies of DeepESN layers.

Sparse Each reservoir unit is randomly connected to a subset of the others,
determining a sparse recurrent matrix Ŵ(l) (see Figure 2(a)). This corre-
sponds to a common setting used in RC practice and serves here as baseline
for our analysis.

Permutation The structure of the recurrence matrix Ŵ(l) is given by a per-

mutation matrix P, i.e. we have:

Ŵ(l) = λP, (4)

where P is obtained by randomly permuting the columns of the identity
matrix, and λ is a multiplicative constant that specifies the value of the non-
zero recurrent weights. In this case, the spectral radius of Ŵ(l) is determined
by the value of λ, i.e. ρ(l) = λ. The permutation topology implies that each
row and each column of the recurrence matrix have exactly one non-zero
element, resulting into a reservoir architecture that presents a variable num-
ber of disjoint cyclic structures, as graphically exemplified in Figure 2(b).
The levels in the deep reservoir architecture are allowed to employ differ-
ent permutations, i.e. the number of cycles in each reservoir layer can be
different.

In the context of shallow ESNs, this kind of topology has been empirically
studied in [2], where it was shown to achieve good memorization skills at the
same time improving the performance of randomly initialized reservoirs in
tasks involving non-linear mappings. Interestingly, the permutation topology
has been investigated in [14] as a way to implement orthogonal reservoir
matrix structures, under the name of Critical ESNs.
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Ring The reservoir units are organized to form a single ring, as shown in Fig-
ure 2(c). Accordingly, the recurrent weight matrix Ŵ(l) is expressed as:

Ŵ(l) = λ











0 0 . . . 1
1 0 . . . 0
...
. . .

. . .
...

0 . . . 1 0











, (5)

where λ is the value of non-zero recurrent weights, and determines the spec-
tral radius of Ŵ(l), i.e. ρ(l) = λ. The ring topology can be easily seen as
a special case of the permutation topology, where the pattern of reservoir
connectivity is ruled by the specific permutation matrix in equation 5, and
the reservoir units are all part of the same cyclic structure.
Reservoirs following this architectural organization have been subject of sev-
eral studies in literature on shallow RC. Notable instances in this regard are
given by the work in [25], in which the ring topology is studied in the context
of orthogonal reservoir structures, and by the work in [23], where the study
is carried out under the perspective of architectural design simplification for
minimum complexity ESN construction. One interesting outcome of previ-
ous analysis on the ring topology is that, compared to randomly initialized
reservoirs, it shows superior memory capacity that, at least in the linear case,
approaches the optimal value [23]. While this optimal memory characteriza-
tion has been extensively analyzed in literature for the more general class of
orthogonal recurrent weight matrices (see e.g. [29,16,3]), the ring topology
presents the advantage of a strikingly simple (and sparse) dynamical network
construction.

Chain The recurrent units are arranged in a pipeline, where each unit - except
for the first one - receives in input the activation of the previous one, forming
a chain as in the example in Figure 2(d). The only non-zero elements in Ŵ(l)

are located in the lower sub-diagonal, i.e. we have:

Ŵ(l) = λ











0 0 . . . 0
1 0 . . . 0
...
. . .

. . .
...

0 . . . 1 0











, (6)

where as in previous cases λ identifies the value of non-zero weights. Although
in this case Ŵ(l) is nilpotent and hence its spectral radius is always 0, we
still operate on λ to control the magnitude of recurrent weights. As such,
with a slight abuse of notation, also in this case we set ρ(l) = λ. Overall, the
chain topology results in a particularly simple design strategy that, from the
architectural perspective, applies a further simplification to the ring topology
by removing one of the connections between the internal units.
Literature works on shallow ESN models pointed out the merits of reservoir
organizations based on a chain topology (also called delay-line reservoirs), as
a very simple approach to the architectural design of the network, resulting
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in a model that is easier to analyze [29] and that leads to comparable or
even better performance than standard ESNs [23,25].

4 Experiments

In this section we illustrate the experimental analysis conducted in this paper.
Specifically, in Section 4.1 we detail the datasets considered and the experimental
settings adopted in our work, whereas in Section 4.2 we report and discuss the
achieved numerical results.

4.1 Datasets and Experimental Settings

In our experiments, we considered benchmark datasets featured by univariate
time-series (i.e., NU = NY = 1).

The first dataset is obtained from a non-linear auto-regressive moving average
system of the 10-th order (NARMA10). At each time-step, the input u(t) comes
from a uniform distribution over [0, 0.5], whereas the corresponding target output
ytg(t) is given by the following relation:

ytg(t) = 0.3 ytg(t−1)+0.05 ytg(t−1)

10
∑

i=1

ytg(t−i)+1.5 u(t−10)u(t−1)+0.1. (7)

The second dataset that we considered is the Santa Fe Laser time-series [28],
where the input values u(t) are sampled intensities from a far-infrared laser in
chaotic regime, re-scaled by a factor of 0.01. We used the Laser dataset to define
a next-step prediction task, where ytg(t) = u(t+ 1) for each time-step t.

The last two datasets are instances of the Mackey-Glass (MG) [21,4] time-
series, obtained by discretizing the following non-linear differential equation:

δu(t)

δt
=

0.2 u(t− τ)

1 + u(t− τ)10
− 0.1 u(t), (8)

where τ is a parameter of the system influencing its dynamical behavior. We
generated two MG time-series using τ = 17 (MG17) and τ = 30 (MG30), rep-
resenting cases with increasingly complex chaotic behavior. In both cases, the
elements of the time-series where shifted by -1 and then passed through the tanh
squashing function as in [17,15]. The two MG time-series allowed us to set up
two next-step prediction tasks, where ytg(t) = u(t+ 1) for each time-step t.

For NARMA10, MG17 and MG30 we generated datasets with 10000 time-
steps, while the Laser dataset contained a number of 10092 samples. In all the
cases, the available data was split into a training set, comprising the first 5000
time-steps, and a test set, comprising the remaining samples. The first 100 time-
steps were used as transient to wash out the initial conditions. The performance
of the considered RC models was evaluated in terms of mean squared error
(MSE) in all the tasks.
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In our experiments, we considered DeepESNs with a total number of 500
recurrent reservoir units, distributed evenly across the layers of the deep archi-
tecture, varying the number of layers L from 2 to 54. All the reservoir layers in
the deep architecture shared the same values for the scaling hyper-parameters ρ

and ωil, i.e. ρ = ρ(1) = . . . = ρ(L) and ωil = ω
(2)
il = . . . = ω

(L)
il . To account for

sparsity, each reservoir unit was randomly connected to 5 units in the previous
layer and to 5 units in the same layer. Of course, when considering permutation,
ring and chain reservoir topologies, the connectivity of the reservoir units in
each layer followed the corresponding specific structure described in Section 3.
In all the cases, we used fully-connected input weight matrices. For every task
and choice of the reservoir topology, the DeepESN hyper-parametrization was
chosen by model selection on a validation set comprising the last 1000 time-steps
of the training split. To this end, we performed a random search with 50 net-
works configurations for each number of layers, sampling the value of ρ from a
uniform distribution in (0.1, 1], and the values of ωin and ωil from uniform dis-
tributions in (0.1, 2]. The achieved results were averaged on 10 network guesses
for each hyper-parametrization explored, and readout training was performed
by using pseudo-inversion. Finally, our experimental analysis was conducted in
comparison with shallow ESN setups, considering the same reservoir topologies
investigated in the DeepESN case, and using the same experimental setting de-
scribed above, with the only crucial exception that all the available reservoir
units were organized into a single layer (i.e. L = 1).

4.2 Results

The test MSE values obtained by DeepESNs in correspondence of all the consid-
ered types of layer-wise reservoir topology are reported in Table 1. For the sake
of comparison, the same table shows the results achieved by shallow ESNs under
the same architectural conditions examined in the deep case. In all the cases,
the sparse reservoir topology is considered as a baseline setup for our analysis.

The performance values reported in Table 1 allow us to draw several lines
of observations. First of all, our results confirm the goodness of the considered
reservoir architectural variants already in the shallow setup, showing improved
performance (i.e., a smaller MSE) with respect to the sparse baseline in all the
cases (with the sole exception of permutation shallow reservoirs on Laser). Sec-
ond, we observe that the performance of DeepESN with constrained topology
(i.e. permutation, ring and chain) enhances that one of sparse DeepESN in all
the considered tasks (with the only exception of deep reservoirs with chain ar-
chitecture on Laser). Moreover, we can see that DeepESN improves the results
of shallow ESN in all the tasks and for all the choices of reservoir topology, both
in the constrained architectural cases and for the base sparse reservoir setup.
Taken together, results in Table 1 clearly indicate the performance advantage
arising from the synergy between deep organization and constrained topology as

4 With the only exception of the case L = 3, where the first two layers contained 167
units and the last one contained 166 units.
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NARMA10

Topology ESN DeepESN Layers
Sparse 1.658 10−4 (3.367 10−5) 1.647 10−4 (3.415 10−5) 2
Permutation 1.354 10−4 (1.589 10−5) 1.243 10−4 (1.464 10−5) 2
Ring 1.494 10−4 (1.547 10−5) 1.482 10−4 (1.713 10−5) 2
Chain 1.571 10−4 (1.780 10−5) 1.569 10−4 (2.594 10−5) 2

Laser

Topology ESN DeepESN Layers
Sparse 1.226 10−3 (1.037 10−4) 8.228 10−4 (2.309 10−4) 5
Permutation 1.312 10−3 (1.385 10−4) 6.633 10−4 (8.861 10−5) 5
Ring 1.161 10−3 (7.541 10−5) 7.640 10−4 (4.331 10−5) 4
Chain 9.496 10−4 (1.183 10−4) 8.555 10−4 (8.302 10−5) 4

MG17

Topology ESN DeepESN Layers
Sparse 3.739 10−9 (1.387 10−9) 2.328 10−9 (8.299 10−10) 2
Permutation 3.093 10−9 (3.241 10−10) 4.576 10−10 (6.280 10−10) 5
Ring 1.585 10−9 (2.989 10−10) 5.043 10−10 (3.891 10−10) 5
Chain 1.950 10−9 (3.745 10−10) 4.913 10−10 (2.535 10−10) 3

MG30

Topology ESN DeepESN Layers
Sparse 1.476 10−8 (1.781 10−9) 1.172 10−8 (1.406 10−9) 2
Permutation 1.027 10−8 (5.412 10−10) 8.618 10−9 (1.457 10−9) 3
Ring 1.197 10−8 (1.549 10−9) 1.078 10−8 (2.066 10−9) 5
Chain 1.086 10−8 (9.519 10−10) 9.096 10−9 (1.803 10−9) 3

Table 1. Test MSE (and std) achieved by shallow ESN and DeepESN settings for
different choices of the reservoir topology. The last column reports the number of
layers selected for DeepESN. Best results for each task are underlined.

factors of architectural design of reservoirs. Giving a structure to the architec-
ture of reservoirs both at a coarser level, i.e. organizing the recurrent units into
layers, and at a finer level, i.e. organizing individual layers’ units into cyclic or
chain structures, amplifies the benefits brought by the two factors individually.
Finally, we notice that the best performing architecture in our experiments is
the DeepESN with permutation reservoir topology, which obtained the smallest
errors on all the tasks, and is put forward here as a particularly effective (yet
sparse and efficient) approach to the architectural design of reservoir models.

5 Conclusions

In this paper we have investigated the role of reservoir topology in the archi-
tectural design of DeepESNs. Specifically, we focused on analyzing the effects
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of constraining the recurrent weight matrix of each layer according to permu-
tation, ring and chain topologies. Numerical results on several RC benchmarks
pointed out a striking beneficial effect arising from the combination of a deep
reservoir construction with a structured organization of the recurrent units in
each layer. Our results indicate that DeepESN with reservoir units arranged to
obey a permutation scheme (i.e., forming multiple rings) provides a particularly
advantageous design strategy for reservoirs, leading to the best performance in
all the explored tasks.

While already giving interesting empirical evidences on the potentialities of
deep RC architectures, the study presented in this paper opens the way to several
directions for further research. First of all, the experimental analysis described
here suggests that the use of simplified deep RC models has a great potential
that can be exploited massively in real-world applications. Leveraging the par-
simonious design approach resulting from structured sparsity of reservoir units,
the class of deep neural models studied in this work seems an ideal candidate
e.g. for embedding advanced learning capabilities on resource-constrained com-
puting devices. On the methodological side, a natural extension of the work in
this paper is to analyze the effect of a broader pool of reservoir architectural
variants, including e.g. small-world [19], cycles with regular jumps [24] and con-
centric [1] reservoirs. Moreover, future research could pursue even further the
simplification of architectural construction in deep RC models, reducing the im-
pact of randomness in the network initialization in the same vein as the works on
minimum complexity ESNs [23,24]. Simplifying the reservoir structure locally to
each layer can also be exploited from a more theoretically-oriented perspective,
easing the mathematical analysis of dynamical properties naturally emerging in
deep RNNs. In this concern, it is certainly interesting to extend fundamental
mathematical results, e.g. pertaining to short-term memory capacity [23,29,16],
or to approximation properties [13] of shallow reservoirs to the case of DeepESN.
In addition to this, we believe that the role of orthogonality in deep reservoirs,
studied in this paper in relation to the individual layers of the architecture, is
an intriguing concept that deserves to be investigated also at the level of global
(instead of local) DeepESN dynamics. Finally, the advantages of constrained
DeepESN architectures delineated in this paper can be extended to larger classes
of models, including e.g. deep RC for complex data structures [10], as well as
fully trained deep RNNs.
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3. Farkaš, I., Bosák, R., Gergel’, P.: Computational analysis of memory capacity in
echo state networks. Neural Networks 83, 109–120 (2016)

4. Farmer, J.D.: Chaotic attractors of an infinite-dimensional dynamical system.
Physica D: Nonlinear Phenomena 4(3), 366–393 (1982)

5. Gallicchio, C., Micheli, A.: Echo state property of deep reservoir computing net-
works. Cognitive Computation 9(3), 337–350 (2017)

6. Gallicchio, C., Micheli, A.: Why Layering in RNN? A DeepESN Survey. In: Pro-
ceedings of the 2018 International Joint Conference on Neural Networks (IJCNN).
pp. 1–8. IEEE (2018)

7. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing:
A critical experimental analysis. Neurocomputing 268, 87–99 (2017).
https://doi.org/https://doi.org/10.1016/j.neucom.2016.12.089
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