3,118 research outputs found

    Data granulation by the principles of uncertainty

    Full text link
    Researches in granular modeling produced a variety of mathematical models, such as intervals, (higher-order) fuzzy sets, rough sets, and shadowed sets, which are all suitable to characterize the so-called information granules. Modeling of the input data uncertainty is recognized as a crucial aspect in information granulation. Moreover, the uncertainty is a well-studied concept in many mathematical settings, such as those of probability theory, fuzzy set theory, and possibility theory. This fact suggests that an appropriate quantification of the uncertainty expressed by the information granule model could be used to define an invariant property, to be exploited in practical situations of information granulation. In this perspective, a procedure of information granulation is effective if the uncertainty conveyed by the synthesized information granule is in a monotonically increasing relation with the uncertainty of the input data. In this paper, we present a data granulation framework that elaborates over the principles of uncertainty introduced by Klir. Being the uncertainty a mesoscopic descriptor of systems and data, it is possible to apply such principles regardless of the input data type and the specific mathematical setting adopted for the information granules. The proposed framework is conceived (i) to offer a guideline for the synthesis of information granules and (ii) to build a groundwork to compare and quantitatively judge over different data granulation procedures. To provide a suitable case study, we introduce a new data granulation technique based on the minimum sum of distances, which is designed to generate type-2 fuzzy sets. We analyze the procedure by performing different experiments on two distinct data types: feature vectors and labeled graphs. Results show that the uncertainty of the input data is suitably conveyed by the generated type-2 fuzzy set models.Comment: 16 pages, 9 figures, 52 reference

    Combining heterogeneous classifiers via granular prototypes.

    Get PDF
    In this study, a novel framework to combine multiple classifiers in an ensemble system is introduced. Here we exploit the concept of information granule to construct granular prototypes for each class on the outputs of an ensemble of base classifiers. In the proposed method, uncertainty in the outputs of the base classifiers on training observations is captured by an interval-based representation. To predict the class label for a new observation, we first determine the distances between the output of the base classifiers for this observation and the class prototypes, then the predicted class label is obtained by choosing the label associated with the shortest distance. In the experimental study, we combine several learning algorithms to build the ensemble system and conduct experiments on the UCI, colon cancer, and selected CLEF2009 datasets. The experimental results demonstrate that the proposed framework outperforms several benchmarked algorithms including two trainable combining methods, i.e., Decision Template and Two Stages Ensemble System, AdaBoost, Random Forest, L2-loss Linear Support Vector Machine, and Decision Tree

    Toward a multilevel representation of protein molecules: comparative approaches to the aggregation/folding propensity problem

    Full text link
    This paper builds upon the fundamental work of Niwa et al. [34], which provides the unique possibility to analyze the relative aggregation/folding propensity of the elements of the entire Escherichia coli (E. coli) proteome in a cell-free standardized microenvironment. The hardness of the problem comes from the superposition between the driving forces of intra- and inter-molecule interactions and it is mirrored by the evidences of shift from folding to aggregation phenotypes by single-point mutations [10]. Here we apply several state-of-the-art classification methods coming from the field of structural pattern recognition, with the aim to compare different representations of the same proteins gathered from the Niwa et al. data base; such representations include sequences and labeled (contact) graphs enriched with chemico-physical attributes. By this comparison, we are able to identify also some interesting general properties of proteins. Notably, (i) we suggest a threshold around 250 residues discriminating "easily foldable" from "hardly foldable" molecules consistent with other independent experiments, and (ii) we highlight the relevance of contact graph spectra for folding behavior discrimination and characterization of the E. coli solubility data. The soundness of the experimental results presented in this paper is proved by the statistically relevant relationships discovered among the chemico-physical description of proteins and the developed cost matrix of substitution used in the various discrimination systems.Comment: 17 pages, 3 figures, 46 reference

    On the treatment of uncertainty in innovation projects

    Get PDF
    Innovations encounter a relatively high level of uncertainty in their lifecycle path. As innovations are about implementing a new idea, they suffer from a shortage or lack of knowledge dependent on and directly proportional to the radical quality of novelty. They lack information to predict the future and face (high) uncertainty in the background knowledge used for the risk assessment. Incomplete information causes innovation risk analysts to assign subjective assumptions to simplify system models developed for innovation risk assessment. Subjective and non-subjective assumptions as uncertain assumptions are part of the background knowledge and source of uncertainty. This thesis tries to assess and treat innovation assumptions uncertainties by proposing a hybrid model which comprises the semi-quantitative risk assessment (SQRA) approach, extended semi-quantitative risk assessment (EQRA) approach, and knowledge dimension method. SQRA and EQRA highlight the criticality of assumptions and present a systematic approach to assess and treat assumption uncertainties. SQRA applies probabilistic analysis to conduct an assumptions risk assessment, and EQRA provides innovation managers with guidance on developing strategies to follow up uncertain assumptions over the process implementation. The knowledge dimension technique evaluates and communicates the strength of background knowledge applied in assumptions risk assessment to innovation decision-makers expressing whole uncertainty aspects in the background knowledge (assumptions, data, models, and expert judgment). The model can effectively contribute to innovation risks and uncertainties management during the project execution.2021-09-29T16:30:09
    • …
    corecore