17,166 research outputs found

    Decision Fusion in Non-stationary Environments

    Get PDF
    A parallel distributed detection system consists of multiple local sensors/detectors that observe a phenomenon and process the gathered observations using inbuilt processing capabilities. The end product of the local processing is transmitted from each sensor/detector to a centrally located data fusion center for integration and decision making. The data fusion center uses a specific optimization criterion to obtain global decisions about the environment seen by the sensors/detectors. In this study, the overall objective is to make a globally-optimal binary (target/non-target) decision with respect to a Bayesian cost, or to satisfy the Neyman-Pearson criterion. We also note that in some cases a globally-optimal Bayesian decision is either undesirable or impractical, in which case other criteria or localized decisions are used. In this thesis, we investigate development of several fusion algorithms under different constraints including sequential availability of data and dearth of statistical information. The main contribution of this study are: (1) an algorithm that provides a globally optimal solution for local detector design that satisfies a Neyman-Pearson criterion for systems with identical local sensors; (2) an adaptive fusion algorithm that fuses local decisions without a prior knowledge of the local sensor performance; and (3) a fusion rule that applies a genetic In addition, we develop a parallel decision fusion system where each local sensor is a sequential decision maker that implements the modified Wald's sequential probability test (SPRT) as proposed by Lee and Thomas (1984).Ph.D., Electrical Engineering -- Drexel University, 201

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Using Bayesian Programming for Multisensor Multi-Target Tracking in Automative Applications

    Get PDF
    A prerequisite to the design of future Advanced Driver Assistance Systems for cars is a sensing system providing all the information required for high-level driving assistance tasks. Carsense is a European project whose purpose is to develop such a new sensing system. It will combine different sensors (laser, radar and video) and will rely on the fusion of the information coming from these sensors in order to achieve better accuracy, robustness and an increase of the information content. This paper demonstrates the interest of using probabilistic reasoning techniques to address this challenging multi-sensor data fusion problem. The approach used is called Bayesian Programming. It is a general approach based on an implementation of the Bayesian theory. It was introduced rst to design robot control programs but its scope of application is much broader and it can be used whenever one has to deal with problems involving uncertain or incomplete knowledge

    Bibliographic Review on Distributed Kalman Filtering

    Get PDF
    In recent years, a compelling need has arisen to understand the effects of distributed information structures on estimation and filtering. In this paper, a bibliographical review on distributed Kalman filtering (DKF) is provided.\ud The paper contains a classification of different approaches and methods involved to DKF. The applications of DKF are also discussed and explained separately. A comparison of different approaches is briefly carried out. Focuses on the contemporary research are also addressed with emphasis on the practical applications of the techniques. An exhaustive list of publications, linked directly or indirectly to DKF in the open literature, is compiled to provide an overall picture of different developing aspects of this area

    Adaptive Non-myopic Quantizer Design for Target Tracking in Wireless Sensor Networks

    Full text link
    In this paper, we investigate the problem of nonmyopic (multi-step ahead) quantizer design for target tracking using a wireless sensor network. Adopting the alternative conditional posterior Cramer-Rao lower bound (A-CPCRLB) as the optimization metric, we theoretically show that this problem can be temporally decomposed over a certain time window. Based on sequential Monte-Carlo methods for tracking, i.e., particle filters, we design the local quantizer adaptively by solving a particlebased non-linear optimization problem which is well suited for the use of interior-point algorithm and easily embedded in the filtering process. Simulation results are provided to illustrate the effectiveness of our proposed approach.Comment: Submitted to 2013 Asilomar Conference on Signals, Systems, and Computer
    corecore