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Glossaries 

  : miss-detection rate of the binary detection 

  : false-alarm rate of the binary detection 

  : detection rate of the binary detection 

  : hypothesis 1, one of the hypothesis in binary detection 

  : hypothesis 0, one of the hypothesis in binary detection 

 : number of sensors in the fusion system with multiple local sensors 

  : decision of the     sensor in the fusion system with multiple local sensors 

   : miss-detection rate of the     sensor 

   : false-alarm rate of the     sensor 

 : the threshold for the likelihood test  

  : global decision of the fusion system 

   : global false-alarm rate of the fusion system 

   : global miss-detection rate of the fusion system 

  : number of samples collected by the sequential sensor 

  :    samples collected by the sequential sensor 

   : statistics (sum) of collected samples 

 : the probability of error of a sequential in one sampling stage  

 : the probability of detection of a sequential in one sampling stage 

 : the probability that no decision was made of a sequential in one sampling stage 

 : the overall error rate of a sequential sensor 

    : average sample number of a sequential sensor 

    : global average sample number of fusion system with multiple sequential sensors 
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  : global error rate of fusion system with multiple sequential sensors 

 ( ): the probability that, in a fusion system with multiple sequential sensors, at least one 

sequential sensor stopped sampling and reached a decision at the     sampling stage 

M: number of local decisions in the genetic code that are formed by multiple binary local-sensor 
decisions 

  (   ): Hamming distance between two genetic codes  

   : the majority decisions in the genetic codes  

   : the minority decisions in the genetic codes  

    : the expectation fitness of a sensor, when the hypothesis changes. 

    
 : the expectation fitness of a sensor, assuming the hypothesis does not change. 

    
 : the true value of sensor’s fitness 

     
   : |    

      
 | the distance between     

  and     
  

     
   : |    

      | the distance between     
  and      

  
   : sensor-level decision on whether the hypothesis changes 

  
   : global-level decision on whether the hypothesis changes 

  
   : The     sensor level decision’s weight 

        
 : the true value of the percentage of the majority decisions in the final generation 

        
 : the expectation of the percentage of the majority decisions in the final generation, 

assuming the hypothesis does not change. 

         
   : |        

          
 | the distance between         

  and         
  

         
     : |        

     | the distance between         
  and 50%  
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Abstract 

A parallel distributed detection system consists of multiple local sensors/detectors that observe 

a phenomenon and process the gathered observations using inbuilt processing capabilities. The 

end product of the local processing is transmitted from each sensor/detector to a centrally 

located data fusion center for integration and decision making.  The data fusion center uses a 

specific optimization criterion to obtain global decisions about the environment seen by the 

sensors/detectors. In this study, the overall objective is to make a globally-optimal binary 

(target/non-target) decision with respect to a Bayesian cost, or to satisfy the Neyman-Pearson 

criterion. We also note that in some cases a globally-optimal Bayesian decision is either 

undesirable or impractical, in which case other criteria or localized decisions are used. In this 

thesis, we investigate development of several fusion algorithms under different constraints 

including sequential availability of data and dearth of statistical information. The main 

contribution of this study are: (1) an algorithm that provides a globally optimal solution for local 

detector design that satisfies a Neyman-Pearson criterion for systems with identical local 

sensors; (2) an adaptive fusion algorithm that fuses local decisions without a prior knowledge of 

the local sensor performance; and (3) a fusion rule that applies a genetic In addition, we 

develop a parallel decision fusion system where each local sensor is a sequential decision maker 

that implements the modified Wald's sequential probability test (SPRT) as proposed by Lee and 

Thomas (1984).  
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1. Introduction 

Data fusion is the process of combining information from several different sources pertaining to 

the same event or phenomenon. The goal is to develop a robust and better understanding of 

the phenomenon or process of interest than what could be achieved by relying on a single 

source.  The field of data fusion is relevant where a large amount of data must be processed 

and distilled to develop information of appropriate quality and integrity on which decisions can 

be made. The volume of literature on data fusion underlines the application areas, which 

include air traffic control, oil exploration, medical diagnosis, military command and control, 

electric power networks, weather prediction and target tracking [28]. 

1.1 Data Fusion Models 

In most data fusion problems, there is an environment, process or quantity whose true value or 

state is unknown. It would be impractical to expect that there be a single source of perfect and 

complete knowledge about the state of interest, and so information is gathered indirectly from 

several sources, each providing imperfect knowledge. These sources are then combined in 

some manner to infer the required state and use it to make subsequent decisions. In a 

statistical framework, the phenomenon being monitored is typically defined using a set of 

hypotheses. The binary hypothesis detection problem, the simplest of these scenarios, 

represents a situation where the observed phenomenon is assumed to be either in “state 0” 

which represents hypothesis   , or in “state 1” which represents hypothesis   .  The challenge 

is to infer the true state of the phenomenon, based on collected sensory observations  , prior 

knowledge about the hypotheses, and a predefined optimality criterion. The final decision of 

the sensor can be represented as follows, 

  {
                

                 
 

Fig.1 shows the binary detection setup with a single sensor.   
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Fig.1. Binary hypothesis testing 

Since many multi-hypothesis problems can be represented in terms of a hierarchy of binary 

hypotheses, this thesis specifically deals with the binary detection problem. 

1.2 Optimality Criteria 

In a detection setup, the observation data are processed to maximize or minimize a predefined 

objective function. The most common optimization criteria for binary decisions use a Bayesian 

framework  and minimize the Bayes' risk. Alternatively, we use the Neyman-Pearson criterion 

(maximization of detection rate (correctly identifying hypothesis   ) under a constrained false 

alarm rate (deciding in favor of hypothesis    when    is true)).   

The Bayes' risk is a function of the prior probabilities of the hypotheses, the costs of making 

decisions, and the conditional distributions of the decision conditioned on the hypotheses.  It is 

defined as 

  ∑∑      (          |           )

 

   

 

   

 (1) 

where     is the cost coefficient when true hypothesis is   while deciding  ;    is the pror 

probability of    being present. 

The Neyman-Pearson criterion fixes the false alarm rate ( (   |  )) at a pre-specified level 

    and then attempts to achieve the maximum rate of detection ( (   |  ))).   

A variety of other optimization criteria for hypothesis testing such as Person-by-Person 

Optimization (PBPO) and use of conditional entropy [11] have been proposed in the literature. 

The algorithms reported in this thesis are based on the Bayes' risk and the Neyman-Pearson 

criterion. 

1.3 Parallel Data Fusion 
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The parallel distributed detection problem involves a bank of sensors (each of the form shown 

in Fig 1) collecting observations about the phenomenon/environment and transmitting a 

processed version of the observations to a central data fusion center (DFC) which is responsible 

for data aggregation. The end goal at the data fusion center is to combine the received data in 

an optimal or near-optimal form to facilitate informed decision making.  When no local 

processing is performed, the data fusion center receives the entire volume of collected 

information for decision making. This scheme is called centralized data fusion (Fig. 2), and is 

studied extensively.  

 

Fig. 2. Centralized Data Fusion: sensors transmit the raw observations to the fusion center. 

Since the fusion center in Fig. 2 has complete knowledge of the all information collected, this 

architecture does not need to reckon with loss of information during the sensing process. On 

the negative side, the centralized system requires high processing power at the fusion center 

and high-bandwidth communication channels between the local sensors and the data fusion 

center.  In many architectures, a local processor follows each sensor providing a compressed 

version of observation of the sensor (e.g., local estimates and decision). Such architectures (see 

Fig. 3) are motivated by two main considerations: (1) the desire to make the system more 

modular and flexible (sensors and processors can be exchanged or replaced); and (2) the 

overhead on communication, data storage, and central computation is usually lower when local 

compression is employed.  
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Fig. 3. Distributed Data Fusion: sensors transmit observations to local processor; the local processors transmit 

processed data to the fusion center 

In Fig. 3, which depicts a distributed data fusion, each sensor has an associated local processor 

which extracts information from the raw sensor observations prior to communication with the 

data fusion center.  Often, a summary or an interpretation of the local observations is sent to 

the data fusion center, which then makes a global decision based on the compressed data it 

had received. Various kinds of compressed data can be transmitted to the fusion center from 

the local detectors such multi-level or binary decisions; changes from a baseline or previous 

decision; or likelihood ratios of the observed data. In almost all these cases, local processing 

leads to information loss. Hence even though the distributed scheme is modular, easier to 

implement and has much less communication bandwidth requirements, it almost always 

exhibits suboptimal performance as compared to a centralized architecture where the fusion 

center uses all available information. For any fusion system design, the centralized scheme can 

therefore be assumed to provide an upper bound on the performance and serve the standard 

for comparative analysis.  

A widely studied variation of the distributed architecture shown in Fig 3 is the parallel binary 

decision fusion architecture where the local detectors individually generate local decisions 

about the state of a binary phenomenon (        ) and transmit the local binary decisions to 

the fusion center for final aggregation. The fusion center uses the local binary decisions 

{  ̃        ̃         ̃    } as inputs and generates a global decision   .  
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1.4 Thesis Overview 

This thesis delves into the theory and applications of parallel binary decision fusion. We 

investigate the parallel decision fusion architecture (Fig. 3) using both the Bayes' risk criterion 

and the Neyman-Pearson criterion.   

In Chapter 3, we present an optimal algorithm that provides the decision thresholds of the local 

detectors such that the global detection rate at the fusion center is maximized*.  In this set up, 

the Neyman-Pearson criterion is used at both local detectors and the fusion center, 

guaranteeing the every binary decision in the system has a false-alarm rate that does not 

exceed a certain pre-specified rate  . We compare the performance of our method with the 

performance of the Person-by-Person Optimization approach and that of a centralized 

detection scheme.   

Chapter 4 focuses on an application of parallel decision fusion. We present a parallel decision 

fusion system where each local sensor is a sequential decision maker that implements the 

modified Wald's sequential probability test (SPRT) as proposed by Lee and Thomas (1984). The 

local decisions are fused at the fusion center by the Chair and Varshney rule (1986). The 

proposed scheme provides an easy-to-implement decision making architecture using local 

sequential decision makers. We evaluate the performance of the sensor bank by two criteria: (1) 

the probability of error; (2) average sample number (ASN) needed to achieve it.  

Chair and Varshney (1986) studied parallel decision fusion under the assumption that the local 

sensor error characteristics (false alarm and mis-detection) are known (fixed) and the local 

observations are independent conditioned on the hypotheses. They provided an optimal global 

decision fusion rule that minimizes a Bayes' risk. The Chair-Varshney rule, though widely used in 

distributed decision making, requires complete knowledge of the prior probabilities of the set 

of hypothesis (   or   ) and the error measures (false alarm and mis-detection) of the local 

detectors. In most applications, these quantities are unknown. Moreover, the local detector 

performances can be time varying. To address these challenges, we develop, in Chapters 5 and 

6, a fusion rule that applies a genetic algorithm to fuse the local-detector binary decisions. The 

* This is joint work with Sayandeep Acharya publish in [39] 
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genetic fusion rule does not use the knowledge of prior probabilities, adapts to time varying 

local sensor error characteristics, and provides near optimal performance (close to the Chair 

and Varshney rule). It does so at the expense of a larger number of observations and higher 

computational overhead. 

Chapter 7 summarizes the thesis contributions. 
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2. Background – Parallel Binary Decision Fusion 

In binary hypothesis testing, Bayesian detection theory is a widely used method for decision 

making. It aims at minimizing the Bayesian risk of the binary decision (accept hypothesis    or 

hypothesis   ). In system with multiple binary decision-makers observing the same phenomenon, 

the decisions of the local decision makers are combined to obtain a global decision by a Decision 

Fusion Center (DFC). The Chair-Varshney fusion rule [1] is a widely used method to combine 

the decision of fixed binary local detector so as to minimize the Bayesian risk of the DFC. 

2.1 Bayesian hypothesis testing 

We observe an environment, trying to decide which one of the two hypotheses,    and   , it 

represents. The prior probability of hypothesis    is   ; the prior probability of hypothesis    is 

  . The decision-maker (sensor) collects observation   from the environment, and accepts 

either    or    based on the observation. The conditional density function of the observation   

under the hypothesis    is  ( |  ),      . Four possible situations may occur, as since, when 

hypothesis    (     ) is present, the system may accept    (     ). Two of these four 

combinations are correct (accept    when    is true,    ). The others are in error (accept    

when    is true,    ).     denotes the cost of accepting    when hypothesis    is true. The 

Bayesian detection rule minimizes the average cost of the decision, known as the Bayesian risk 

   

  ∑∑      (         |             )

 

   

 

   

  (2.1) 

   is the prior probability of hypothesis   ;     is the cost of choosing    when    is true; 

 (         |             )  is the probability of the global decision supporting    under 

hypothesis    is true. When assuming           and          , the Bayesian risk 

becomes the average probability of error. 

Assuming         and        , the minimization results of   in equation (2.1) in the 

likelihood ratio test [28] 
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 ( |  )

 ( |  )

  

 
 
  

  (       )

  (       )
 (2.2) 

As the natural logarithm is a monotonically increasing function and the two sides of the 

likelihood ratio test are positive. An equivalent test is 

   *
 ( |  )

 ( |  )
+

  

 
 
  

   *
  (       )

  (       )
+ (2.3) 

Two types of error may occur. One type of error is miss-detection, defined as accepting   , 

given that    is present. The probability of miss-detection is denoted as   . The other type of 

error is false alarm, defined as accepting   , given that    is present. The probability of false 

alarm is denoted as   . 

    (         |             ) (2.4.1) 

    (         |             ) (2.4.2) 

The probability of detection    is defined as the probability of accepting   , when    is present, 

           (2.5) 

The probability of error of the decision is 

 (     )               (2.6) 

 

2.2 Binary distributed detection 

A parallel binary distributed decision fusion system consists of a bank of   local 

sensors/detector communicating with a fusion center as shown in Fig. 1. The decision fusion 

center (DFC) combines fixed local detectors. The     local sensor/detector collects observations 
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from a phenomenon under surveillance and makes binary decisions    which are of the 

following form: 

   {
            

             
 

Here     and    are hypotheses about the state of the phenomenon being observed (   :  a 

target is present;    : a target is not present). There are   local sensors/detectors, so   goes 

from 1 to  . The local decisions are sent to the decision fusion center (DFC) over error-free 

channels. The decision fusion center integrates the decisions to a global binary decision  

  (                                  ).  

 

Fig.4. Structure of distributed detection system with parallel sensors 

 

2.3 Chair-Varshney fusion rule 

Chair and Varshney [1] developed the optimal fusion algorithm for fixed local sensors/detectors 

(with known constant local false-alarm and miss-detection rates) and when the local decisions 

are statistically independent, conditioned on the hypothesis. A generalization of this result 

under correlated local decisions is available in [2]. 

The Chair-Varshney fusion rule aims at minimizing the global Bayesian risk,   of global decision 

   (see expression (2.1) and Fig. 4). 

The Chair-Varshney fusion rule is given by 
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{
 
 
 
 

 
 
 
                                                        ∑    

 

   

  

                                                   ∑    

 

   

  

                     ∑    

 

   

    

 (2.7) 

where    

{
 

    
     

   
       

   
   

     
      

 

 

 

     *
  (       )

  (       )
+ 

Here,     and     represent the false alarm rate and missed detection rate of the     local 

sensor/detector. 

Under the rule in equation (2.7), the fusion system’s global false alarm rate     and global 

missed detection rate     are as [7]: 

 

    ∑  ∑ |∏(      )

 

   

|

 

    

   [   ∏(
     

   
)
    

(
   

     
)
  

 

   

]

 

    

 (2.8.1) 

 

    ∑  ∑ |∏(      )

 

   

|

 

    

   [  ∏(
     

   
)
  

(
   

     
)
    

 

   

]

 

    

 (2.8.2) 

where,    *   +. The summation is performed over all possible combinations of local 

decisions. 

When the local sensors are identical,        and       . The global probability of false 

alarm becomes [7, 8]: 

 
    ∑ (

 

 
)  

 (    )
(   )

 

    

 (2.9.1) 

The global missed detection rate becomes: 
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    ∑ (

 

 
)  

 (    )(   )

 

    

   (2.9.2) 

where 

      {
     .

    

  
/     (

  (       )
  (       )

)

   .
    

  
/     .

    

  
/

}   

      {
   (

  (       )
  (       )

)       .
    

  
/

   .
    

  
/     .

    

  
/

}   

and    ( ) is the nearest-integer function,    ( )  denotes the largest integer that is smaller than 

 . 

2.4 Decision fusion rule with Neyman-Pearson criterion 

Thomopoulos [6] developed a decision fusion rule using the Neyman-Pearson criterion for fixed 

and independent local sensors/detectors. This decision fusion rule aims at maximizing the 

global detection rate when an upper bound in the global probability of false alarm is specified. 

The fusion center implements the Neyman-Pearson criterion to fuse all the local sensor decisions 

and generate a global decision. The fusion center decision rule formulates a likelihood ratio test: 

 

 (  )  
 (          |  )

 (          |  )
 ∏

 (  |  )

 (  |  )

 

   

  

 
 
  

  (2.10) 

The threshold   is determined by the global false alarm rate    : 

 ∑  ( (  )|  )

 ( )   

     (2.11) 

In order to implement the Neyman-Pearson criterion, it is needed to compute  ( ( )|  ) . 

However, due to the independence assumption of the local sensor, it is easier to obtain the 
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distribution  (    (  ) |  )  which can be expressed as the convolution of the individual 

 (    (  ) |  ): 

 (    (  ) |  )   (    (  ) |  )     (    (  ) |  ) (2.12) 

The likelihood ratio  (  )  assumes two values. Either (        )  (        )  when      

with probability (       ) under hypothesis    and probability (        ) under hypothesis   ; 

or         , when       with probability     under hypothesis    and probability     under 

hypothesis   . Hence, we can write: 

 (    (  ) |  )

 (        ) {    (  )     
     

       
}      {    (  )     

   

    
} 

(2.13.1) 

and 

 (    (  ) |  )

 (        ) {    (  )     
     

       
}      {    (  )     

   

    
} 

(2.13.2) 

where the (Kronecker) delta function  () is defined as 

 ( )  {
     
     

 

At the fusion center, the global false alarm rate is:  

     ∑  ( (  )|  )

 ( )   

 (2.14) 

where    u=is a threshold chosen to satisfy () for a given    . Similarly the global detection rate 

is: 

     ∑  ( (  )|  )

 ( )   

 (2.15) 
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3. Optimal Distributed Decision Fusion using Neyman-Pearson Criterion 

This section presents work done in collaboration with Sayandeep Acharya. A paper based on this 

work was published in the Information Fusion 2013. Ji Wang’s contribution is primarily in section 

3.1. 

3.0 Introduction 

Performance of a parallel binary decision fusion architecture is considered where both the local 

detectors and the Decision Fusion Center use the Neyman-Pearson criterion. The architecture 

comprises N local detectors in parallel, each sending a binary decision to a fusion center for 

integration. The algorithm designed here fixes the global false alarm rate and attempts to 

compute the local detector thresholds and the global fusion rule that achieve the maximum 

global detection probability. The key computational requirement is to find the roots of a certain 

Nth order polynomial. We compare the performance of our method with the performance of 

the Person-by-Person Optimization (PBPO) approach and that of a centralized detection 

scheme. 

3.0.1  The scheme 

A group of   local detectors observe a phenomenon. Each local detector decides whether to 

accept one of two binary hypotheses, and it transmits its decision to a fusion center. 

Thomopoulos provided a general proof that the optimal decision scheme that maximizes the 

probability of detection at the fusion center for a fixed false alarm rate consists of a Neyman-

Pearson test at the fusion center and likelihood tests at the local detectors.  

In [9] and [10], a Person-by-Person-Optimization (PBPO) approach was used for designing the 

entire system (local and DFC decision rules), which in general is not guaranteed to achieve 

system wide optimality [11]. The proposed PBPO solutions required simultaneous solution of 

non-linear coupled equations for decision thresholds, which can become difficult as the number 

of equations increases.  

3.0.2  Objectory 
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In this study, we attempt to achieve the optimal solution for the entire system when the 

maximum global probability of false alarm is specified, and when the DFC and the local 

detectors are designed so that the global probability of detection is maximized. We assume that 

the local detector observations are independent conditioned on the hypothesis. The principal 

effort in the design turns out to be to solve for the roots of a certain Nth order polynomial. 

 

Fig.5. Structure of distributed detection system with parallel sensors/detectors 

3.1 Decentralized Neyman-Pearson Decision Fusion 

The Neyman-Pearson test fixes the global false alarm rate  (    |  ) at a pre-specified level 

     and then attempts to achieve the maximum global probability of detection 

 (    |  ). The fusion center decision rule becomes a likelihood ratio test, and takes the 

form 

 (  )  
 (          |  )

 (          |  )

  

 
 
  

   

The threshold    is computed such that the global false alarm does not exceed  . Assuming that 

the local decisions are independent (conditioned on the hypothesis), we have 

 (  )  ∏
 (  |  )

 (  |  )
 ∏ (  )  
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Fig. 6. Probability mass function of local sensor/detector likelihood 

As the local decisions    are binary, the conditional probability distributions  ( (  )|  ) and 

 ( (  )|  ) for the     detector likelihood ratio are discrete as shown in the Fig. 6.  Let us 

consider a decision fusion system consisting of   identical local detectors with local false alarm 

and missed detection rates given respectively as       and      , with     (   )   

     . The global conditional distributions of the likelihood ratio  ( ) can be expressed using 

the binomial distributions 

 ( (  )|  )  ∑(
 

 
)

 

   

(   ) ( )   * , ( )  (
 

   
)
   

(
   

 
)
 

-+ (3.1.1) 

and 

 ( (  )|  )  ∑(
 

 
)

 

   

( ) (   )   * , ( )  (
 

   
)
   

(
   

 
)
 

-+ (3.1.2) 

In the case of   identical detectors, the distributions in (3) and (4) will have     probability 

masses. Let us index them by          . An arbitrary global false alarm probability    
    

can be realized as a convex combination 
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  (   ) ∑ (
 

 
)

 

    

( ) (   )     ∑ (
 

 
)

 

      

( ) (   )    (3.2) 

Where    is the smallest value of   ,       - such that 

  ∑ (
 

 
)

 

    

( ) (   )    

And the parameter   ,   - is given by 

  
  ∑ ( 

 
) 

    ( ) (   )   

∑ ( 
 
) 

      ( ) (   )    ∑ ( 
 
) 

    ( ) (   )   
 (3.3) 

The global probability of detection then becomes 

    (   ) ∑ (
 

 
)

 

    

(   ) ( )     ∑ (
 

 
)

 

      

(   ) ( )    (3.4) 

We are looking for the value of the likelihood ratio  ( ) such that the sum of all the probability 

masses at and to the right of  ( ) is equal to  . For identical detectors, the fusion rule is always 

  out of  . In this case the desired  ( ) must satisfy the following 

 ( )  (
 

   
)
   

(
   

 
)
 

 (3.5) 

for some   ,       -. In that scenario, the parameter   reduces to either 0 or 1. Let    

denote the value of   that satisfies (5). The global false alarm probability becomes 

      ∑ (
 

 
)

 

    

( ) (   )    (3.6) 

And the corresponding global 
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      ∑ (
 

 
)

 

    

(   ) ( )    (3.7) 

The system-wide optimal solution is therefore the pair (    ) obtained by solving (6) for   for 

every    and then choosing the pair that maximizes global detection rate. Since      ,     . 

Noting that for a fixed   , the summand in (3.6) is a monotonically increasing function of  , the 

solution for   in (3.6) in the feasible region of (   ) is unique. Therefore, if the   roots of the 

equation 

∑ (
 

 
)

 

    

( ) (   )        (3.8) 

are evaluated for every   , there would be up to   distinct solutions (one for each   ). Each 

one of these solutions would correspond to a value of the global probability of detection (from 

(3.7)). The optimal local false alarm rate would then be the one that provided the maximum 

global probability of detection. 

 

Fig. 7: Variation of global probability of detection   
  and   with local sensor/detector false alarm rate   for 

identical sensor/detector 
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In Fig. 7 we show an example of fusion system with 6 local detectors. The global false alarm 

rate is chosen to be       . In Fig. 7 we show the variation of the global probability of 

detection as the local detector false alarm rate ( ) is varied. It is notable that the curve 

representing the global probability of detection has cusps at the locations where switches 

between its maximum and minimum values (implying a change in   ); it is not differentiable 

there. The maximum global detection rate is obtained from the   global detection rates 

corresponding to the   feasible   values obtained by solving (6) for every   . 

The computational burden involved with this approach is to compute roots of the     order 

univariate polynomial (3.8). We summarize the proposed algorithm as below.  

Optimal Distribution Fusion Algorithm: 

(1) For   detector, consider possible values of    in the range ,        - 

(2) Solve for the roots of (3.8) for each value of   . For each    there will be up to   distinct 

roots. Let the root which is in the feasible region of ,   - for a particular    be denoted 

by   ( 
 ). 

(3) Assuming the local detector observations have a continuous distribution, compute the 

corresponding local detector threshold      using   ( 
 ) as follows 

∫  ( (  )|  )
 

    

   ( 
 ) 

(4) Compute the corresponding local mis-detection rate   ( 
 ) as follows 

∫  ( (  )|  )
    

  

   ( 
 ) 

(5) For each possible value of   , namely 1, 2, …,  , compute the global probability of 

detection    ( 
 ) using (3.7) with     ( 

 ) 

(6) Find the value of (  ) that provide the maximum value of    ( 
 ) 

(7) The corresponding   ( 
 ) is the local false alarm for the local detector that would 

provide the best global detection rate for the maximum global false alarm of  . 

In the following section, we briefly discuss the Person-By-Person-Optimization (PBPO) approach 

frequently used for a distributed decision fusion system design and then proceed to compare 

the performance of the PBPO approach with the proposed scheme through numerical examples. 
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3.2 Person-By-Person Optimization 

A general method for seeking system-wide design of a decision fusion system is through the 

Person-By-Person- Optimization (PBPO) method. The distributed detection system is viewed as 

a team of two members. The group of local detectors forms one member and the DFC is the 

other member. Performance of each member of the team is optimized separately with the 

assumption that the other member has already been optimized. This approach requires 

simultaneous solution of nonlinear coupled equations for local detector thresholds and the 

global fusion rule. Still, the PBPO optimal solution is not guaranteed to achieve the true team 

optimum [11]. For an N detector binary decision fusion system with non-identical detectors, the 

PBPO solution is obtained by simultaneous solution of      nonlinear coupled equations [9], 

[10]. When the local detectors are identical and the observations at the local detectors are 

independent conditioned on the hypothesis, the number of equations for PBPO approach under 

Neyman-Pearson criterion drops down to 3. Next we outline the PBPO solution for identical 

detectors using the Neyman-Pearson criterion. 

3.2.1  PBPO-Optimal Local Detector threshold 

Under the Neyman-Pearson criterion, the global probability of detection is maximized under 

the constraint that the global false alarm satisfies      . We therefore form the objective 

function to be maximized as 

       (     ) (3.8) 

where   is the Lagrange multiplier. Using (3.6) and (3.7), we have 

  ∑ (
 

 
)

 

    

(   ) ( )     [∑ (
 

 
)

 

    

( ) (   )     ] (3.9) 

Expanding (3.9) in terms of   and  , the probability of misdetection and false alarm of a local detector 

respectively, we have  
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  (   ) ∑ (
 

 
)

 

    

(   )   ( )     [ ∑ (
 

 
)

 

    

( )   (   )     ] (3.10) 

Let us define the expressions 

   ∑ (
 

 
)

 

    

( )   (   )     

and 

   ∑ (
 

 
)

 

    

(   )   ( )     

The expression in (3.10) becomes 

  (   )    (     ) (3.11) 

Since    is sum of positive real numbers,     . Hence we have 

   
 

  
(   )  

   

  
(  

 

  
) (3.12) 

Maximizing    implies that each local detector maximizes its own probability of detection 

(   ) subject to the constraint that its local false alarm is bounded as   
 

  
. Each local 

detector performs a likelihood ratio test as 

 (  |  )

 (  |  )

  

 
 
  

     (3.13) 

where    are the     observations for the detector and the local threshold      is computed such 

that the local false alarm is fixed at   
 

  
. In other words, (3.12) becomes the Lagrangian for a 

local detector and under the Neyman-Pearson criterion, is given by the Lagrange multiplier 
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therefore implying      
   

  
, where   is the threshold for the global likelihood ratio test. From 

the local detector optimization, we obtain 

 

     
   

  
 (3.14) 

  
 

  
 (3.15) 

3.2.2  PBPO-Optima Global fusion rule 

Since the local detectors are identical, the global fusion rule is a   out of   rule [9]. The optimal 

  (denoted by   ) can be obtained by noting that the Lagrange multiplier in (3.8) is effectively 

the threshold of the global likelihood ratio test or the value of  ( ) at which (3.5) is satisfied, 

and therefore  

(
 

   
)
   

(
   

 
)
 

   

Taking natural logarithm of both sides , we have 

  [   (
   

 
)     (

 

   
)]     ( )      (

 

   
) 

Since the constraint is      , we can express the optimal    

   ⌈
   ( )      .

 
   /

   .
   

 
/     .

 
   

/
⌉ (3.15) 

where ⌈ ⌉ is the ceiling function defined over the set of integers ( ) as 

⌈ ⌉     *   |   + 

The complete PBPO solution for identical detectors under Neyman-Pearson criterion therefore 

requires the simultaneous solution of the coupled nonlinear equations (3.13), (3.14) and (3.15). 
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In general the PBPO solution does not converge to the team optimum solution. Bauso and 

Pesenti in [11] showed that the necessary and sufficient condition for a PBPO solution to 

converge to the team optimum is satisfied when the team cost function has a unique local 

minimum. This is not the general case for the problem we study, as shown, for example, in Fig. 

7 where the global probability of detection is not unimodal with respect to the local detector 

false alarm rate,  . 

The PBPO ROC is a collection of different ROC curves (each corresponding to a different value of 

the optimal   ); the collective PBPO ROC is formed using the upper envelopes of each of those 

constituent ROC curves. Due to this feature, even though the ROC curves corresponding to any 

particular    is concave, the overall PBPO ROC curve is not concave as the PBPO optimal    

changes. 

3.3 Examples and Discussion 

We provide a performance comparison of our method with the PBPO approach using ROC 

curves for several scenarios. We also include the performance of a centralized fusion scheme, 

where the data fusion center receives the raw observations and computes the global decision 

with no involvement of local detectors. Since the centralized architecture performs no local 

data compression, it provides an upper bound on the performance of a parallel fusion system. 

In our scenario for the centralized architecture, the fusion center receives         

observations and uses a Neyman-Pearson test with specified false alarm probability to arrive at 

a decision. We consider the following three cases: 

(1) Observations are Gaussian distributed with different means under the two hypotheses, 

namely: 

 (  |  )  (    ) 

 (  |  )  (    ) 

ROCs are shown in Fig. 8 for three systems, namely: (a) Distributed detection using 

optimal distributed fusion algorithm; (b) Distributed Neyman-Pearson detection using 

PBPO; and (c) Centralized detection. Four different values were used for  , namely 
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3,4,5 and 6. Fig. 8 shows the extent to which the optimum detection scheme improves 

over PBPO. The centralized system is of course better than both. 

(2) Observations are Exponentially distributed, 

 (  |  )    (   ) 

 (  |  )    (   ) 

(3) Observations are Gamma distributed, 

 (  |  )      (   ) 

 (  |  )      (   ) 

Fig. 9 shows the system’s ROC curves for the Exponential and Gamma distributions, and 

documents the improvement provided by the optimal algorithm. Depending on the distribution 

of the local detector observations, some values of global false alarm may not have a 

corresponding PBPO solution. Several such regions are noticed in Fig. 9. 
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Fig. 8: ROC curves under various SNR for distributed Neyman-Pearson detection using optimal distributed fusion 

algorithm; distributed Neyman-Pearson detection using PBPO; and centralized Neyman-Pearson detection. 

 

Fig. 9: Performance comparison of the three systems when local detector observations are Exponential and Gamma 

Distributed. 

We considered system-wide optimization of a distributed decision fusion system where a group 

of local sensor/detectors perform binary hypothesis testing on observations from a common 

volume of surveillance and communicate their decisions to a decision fusion center. The 

objective is to maximize global probability of detection under a global probability of false alarm 

constraint. The local detector decision thresholds and the global fusion rule were derived by 

computing the roots of an     order polynomial where   is the number of local detectors. The 

proposed method was compared against the PBPO approach. ROC curves of several scenarios 

demonstrate the extent to which the optimal solution outperforms PBPO, and the extent to 

which it is over performed by a centralized detection scheme (where all the raw observations 

are transmitted to the data fusion center).   
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4. Decision Fusion for Parallel Sequential Sensors 

4.0 Introduction 

Lee and Thomas (1984) have introduced a modified version of Wald’s sequential probability 

ratio test. The modified version retains most of the features of Wald’s procedure but is easier 

to analyze and offers efficient truncation procedures. In this study, we use the Lee-Thomas 

design to analyze the performance of a bank of   parallel sequential sensors whose decisions 

are fused. We evaluate the performance of the sensor bank by two criteria: (1) the probability 

of error; (2) average sample number (ASN) needed to achieve it. Three rules are studied: (1) 

first-to-decide rule (Niu and Varshney, 1984): once at least one sensor has stopped sampling, 

we adopt the decision of one of the stopped sensors; (2) all-that-decided rule: once at least one 

sensor has stopped sampling, we integrate all the decisions of stopped sensors through the 

1986 Chair-Varshney decision fusion rule; and (3) all-sensors rule: once at least one sensor has 

stopped sampling, we combine the available decisions of the stopped sensor and the implied 

decisions of the remaining sensors. Performance of the three rules is calculated and gains with 

respect to the performance of a single sensor are quantified. 

Sequential detection procedures find applications in several areas of research. Lee and Thomas 

have proposed [5+ a modification to Wald’s Sequential Probability Ratio Test (SPRT) *3+. Wald’s 

procedure was in turn a significant improvement over previous fixed-sample-size (FSS) 

detection methods. The Lee-Thomas procedure, titled the memory-less grouped-data 

sequential (MLGDS) procedure, tests a simple hypothesis against a simple location alternative, 

based on n independent and identically distributed samples. Specifically, at each stage, the    

consecutive previous samples are taken, and a test statistic based on them is calculated. A two-

threshold test is then made. If the test statistic is above the higher threshold or below the lower 

threshold, a decision is made. Otherwise the    samples are discarded, and the next    samples 

are collected for calculating the next test statistic. Lee-Thomas MLGDS procedure exhibits 

simplicity in structure and analysis and retains most of the features of Wald’s SPRT. 

We present a fusion rule for fusing   isolated and identical sensors that use the optimized 

MLGDS detection procedure. Once at least one sensor has stopped sampling, we combine the 
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available decisions of the stopped sensor and the implied decisions of the remaining sensors to 

get a global decision using Chair-Varshney decision fusion rule.  

The architecture is shown in Fig. 10. Each local sensor collects information about a 

phenomenon they observe, and make binary decisions based on this information. The decision 

is to accept the hypothesis    or accept hypothesis   . The decisions follow the MLGDS 

procedure. They are transmitted to a Fusion Center, where they are integrated to generate the 

system’s global binary (   or   ) decision. 

 

Fig. 10. Structure of distributed detection system with parallel sequential sensors 

4.1 Lee and Thomas Modified Sequential Detection Rule 

In [1], Lee and Thomas have studied, using a single sensor, a procedure that tests the 

hypothesis    

              

versus the alternative hypothesis    

              

where          ,    and    are real numbers;    are normally and independently 

distributed each with mean   and variance  . 
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MLGDS procedure [1]: At the     stage, using the previous    samples, form a test statistic 

where 

   ( (   )      (   )             ) 

   (  )  ∑   

   

  (   )    

 

and make the following decisions: 

   (  ) {

     

     

     (  )     
 

Here R = discard all used samples and proceed to the next (   )   stage.  

A and B are testing thresholds with    . They are predetermined so as to achieve the 

desired test level and power, and to satisfy other conditions, mostly simplifying the procedure. 

One possible choice for the two thresholds (for the particular case we study) is proposed in 

[1] – the thresholds are placed symmetrically about   (     ).   and   then become 

     (     )       

     (     )       

where   is a parameter, which is a positive real number. 

If we use these symmetric thresholds   and , it follows that {     |  }   {     |  } 

and  {     |  }   {     |  }. 

The probability of error   at the     stage is 

   {     |  }    {     |  }   

The probability of detection   at the     stage is 

   {     |  }    {     |  }   

Here    is the a priori probability of hypothesis  ;    is the a priori probability of hypothesis  . 
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The probability that no decision was made at the     stage (and hence we proceed to the 

(   )   stage) is 

   {       | }    {       | }         

The overall error rate   of the sequential sensor is therefore 

             
 

   
 

 

   
 

The corresponding average sample number      is: 

                   
  

   
 

  

   
 

4.2 Fusion Rule for Lee-Thomas Sequential Sensors 

For the fusion of Lee-Thomas sequential sensors, we propose three fusion rules: First-to-decided 

rule, All-that-decided rule, All-sensor rule. 

4.2.1 First-to-decided rule 

Under this rule, the Fusion Center accepts the first decision that one of these   sensors 

reported as the global decision, provided of course that at least one of them stopped (namely 

reached a decision). If exactly one sensor stopped, the Fusion Center accepts its decision as 

global. 

Under this rule, since only one sensor’s decision is used as the global decision, the overall error 

rate will be the error rate of a single sensor. 

The probability at least one sensor stopped at the     stage is: 

  ( )   (   ( )      )   (   )     ,  

where,   is a positive integer.   is the number of samples sampled by each of the parallel   
sensors before the system stopped.  

The global average sample number in this case is 

      (   ( ))  ∑{(   ) 
( )}
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Since    , it follows that 

 
     

  

    
      

  

   
  

and     

    
 

   

    
  

           
   

     (   )      

If more than one of the sensors stopped at the end of the stage, the Fusion Center randomly 

chooses one of the stopping sensors’ decision to provide the global decision. For a certain 6-

sensor system, Fig. 11 shows the probability that k sensors stopped simultaneously, where 

      . The probability of k >1 is higher than the probability that k = 1. Furthermore, the 

larger the number of local sensors used by the system, the higher the probability of having 

multiple sensors stop simutaneously at the end of the stage. This observation suggests the next 

rule, which we refer to as the All-that-decided fusion rule. 

 
Fig. 11. A 6 sensor system is considered. The probability is shown that  when at least one sensor stopped at the end of a stage, the 

number of simultaneously stopping sensors was 1, 2, 3, 4, 5 or 6. 

4.2.2 All-that-decided rule 

Under this rule, when at least one sensor has stopped, all the sensors that reached a decision 

simultaneously are taken into account for calculating the global decision. As these sensors that 

reached a decision either accept    or accept   , we use the Chair-Varshney binary decision 

fusion rule to integrate these decisions.  
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The probability (  ) that exactly   first-stop sensors out of   local sensors reached a decision is 

 

   ∑  
( )

 

   

 
 

    
(
  

 
) (   )   (   )  

Here   
( )

 represents the probability that exactly   first-stopped sensors reached a decision at 

the     stage. 

As local sensors are assumed to be identical, if exactly   sensors have reached a decision, 

the system’s error rate can be calculated by using equations (12a-12d), namely 

 
     ∑ (

 

 
)   

 (     )
(   )

 

    

   ∑ (
 

 
)   

 (     )
(   )

 

    

  

The global error rate is 

 

                    ∑    

 

   

  

 

Fig. 12.                      ⁄  (                    is the global error rate of All-that-decide fusion system,   is the error rate of 

a single sensor), for the All-that-decided sequential fusion rule vs. the number of local sensors 

While the All-that-decided rule makes use of all available decisions of the local sensors, there is 

still unused information in the system, namely the sampled data of all the sensors that have not 

yet reached a decision. In the next section, we will introduce an All-sensors fusion rule that also 

takes into account this sampling data by implying a decision for the unstopped sensors. 

4.2.3 All-sensor rule 
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If there are at least one of local sensors stopped and reached a decision, fusion center forces all 

the sensors that have not stopped yet to provides their implied decisions. Then, the fusion 

center collects and integrates the decisions of all the sensors that stopped and the implied 

decisions of all the sensors that haven’t stopped. All local sensors are redesigned to have an 

additional threshold  : 

    (  
  (       )

  (       )
 
 

 
) 

The following rule is used for the sensors that have not stopped: 

   (  ) {
     

     
 

The threshold   is selected so that the undecided sequential sensors minimize the Bayesian risk 

[Section II-2]. When we minimize the probability of error, the threshold becomes 

    (  
  

  
 
 

 
) 

With this third threshold   all sensors provide a binary decision to the Fusion Center.  

For the sensors that stopped  

     *        | +(   )   {     |  } 

     *        | +(   )   {     |  } 

For the sensors that that did not stop but provided an implied decision 

     *        | +( )   {     |  } 

     *        | +( )   {     |  } 

We can now use Chair-Varshney fusion rule to integrate all decisions.  

The sensors that did not stop and provided an implied decision have a higher error rate than 

those sensors that use threshold   and   to decide. With the same probability, still, the sensors 

that use threshold   have better performance than ‘pure-chance sensor’. The pure chance 
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sensors simply decide    or    without using information from statistics with an error rate of 

0.5. 

 

Fig. 13.                 ⁄  (               is the global error rate of the All-sensors fusion system,   is the error rate of a single 

sensor) for the All-sensors sequential rule vs. the number of sensors.  

Consider a single MLDGS sensor with error rate of        and     of    . Table 1, Fig. 13, and 

Fig. 14 show the performance of a All-sensors sequential fusion rule system as the number of 

local sensors increases. Table 1, Fig. 13 and Fig. 14 show how the ratio of the global error rate 

to a single sensor error rate and the ratio of the global     to a single sensor     are 

improved by applying the All-sensors sequential fusion rule. They also show the comparison 

with the performance of a single sensor. As the number of local sensors increases, the ratio of 

the global error rate to the error rate of a single sensor decreases (and approaches 0). In Fig. 14, 

as the number of sensors is increased from 2 to 20, the ratio of the global     to a single 

sensor decreases and then settles at (   )    . 

. 
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Fig. 14.         ⁄  (     is the global ASN of fusion system,      is the ASN of one sensor) for the All-that-decided 

sequential fusion rule vs. the number of local sensors. 

 

TABLE I.  PERFORMANCE OF MULTIPLE SENSORS FUSION SYSTEM APPLIED ALL-SENSORS FUSION RULE 

Number 

of 

Sensors 

Global Error 

Rate     

  

 
 Global 

ASN      

    

    

 

2 0.0067214 0.52347 747.93 0.75855 

3 0.0057904 0.45097 694.55 0.70441 

4 0.0033502 0.26092 679.12 0.68876 

5 0.0027507 0.21423 674.35 0.68393 

6 0.0016968 0.13215 672.85 0.68240 

7 0.0013532 0.10539 672.37 0.68192 

8 0.0008725 0.06795 672.22 0.68176 

9 0.0006818 0.05310 672.17 0.68171 
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10 0.0004536 0.03533 672.16 0.68170 

11 0.0003493 0.02720 672.15 0.68169 

12 0.0002378 0.01852 672.15 0.68169 

13 0.0001811 0.01411 672.15 0.68169 

14 0.0001254 0.00977 672.15 0.68169 

15 0.0000948 0.00738 672.15 0.68169 

 

We designed a fusion rule for Lee-Thomas sequential sensors. We compared the performance 

in terms of the global error rate and Average Sampling Number (   ). This sequential fusion 

rule can make use of all the sensors in the system, even some sensor haven’t reach a decision. 

We add a new threshold for Lee-Thomas sequential sensors. With this new threshold, the 

sensors that haven’t reach a decision will provide an implied decision. The sequential fusion 

system show improved     and accuracy comparing to the single local sensor. 

 

Fig. 15. Global error rate comparison, All-that-decided vs. All-sensors rule 
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Fig. 15 compares the global error rate for the All-sensors sequential fusion rule to the All-that-

decided rule for the same sensors considered in the previous paragraphs. The All-sensors 

sequential fusion rule shows lower error rates compared to All-that-decided rule. 

We examined three fusion rules for sequential sensors in a parallel configuration. We compared 

the performance in terms of the global error rate and Average Sampling Number (ASN). The 

first rule is First-to-decide rule, viz. the Fusion Center chooses one of the first set of local 

sensors’ decisions it receives as the global decision; the sensors that have not reached a 

decision are ignored. The second rule is the All-that-decided rule, viz. once at least one sensor 

has stopped sampling, we integrate all the decisions of stopped sensors through the 1986 

Chair-Varshney decision fusion rule. The third rule is the All-sensors rule, viz. once at least one 

sensor has stopped sampling, we combine the available decisions of the stopped sensor and the 

implied decisions of the remaining sensors. Among the three rules examined, the All-sensors 

rule has the lowest global error rate, with the same ANS as the other two rules. 
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5 Adaptive Decision Fusion in Stationary Environments 

5.0 Introduction 

In the binary decision fusion system shown in Fig. 5, the fusion center combines all the local 

decisions to obtain a global decision. For observations that are statistically independent 

conditioned on the hypothesis, the Chair-Varshney fusion rule minimizes the global Bayesian 

risk. However, this fusion rule requires knowledge of local sensor performance parameters and 

the prior probabilities of the hypothesis set. In most applications, these are unavailable. 

Moreover, local sensor performance may be time varying. Several studies attempted on-line 

estimation of the unknown local performance metrics and prior probabilities. We develop a 

fusion rule that applies a genetic algorithm to fuse the local-sensor binary decisions. The rule 

adapts to time varying local sensor error characteristics and provides near optimal performance 

at the expense of a larger number of observations and higher computational overhead. 

Under the assumption that the local sensor error characteristics are known (fixed) and the local 

observations are independent conditioned on the hypotheses, Chair and Varshney (1986) 

proposed an optimal decision fusion rule for distributed detection that minimizes the Bayes' 

risk of a global decision. The Chair-Varshney rule, though widely used in distributed decision 

making, requires complete knowledge of the prior probabilities of the set of hypotheses and 

the error measures (false alarm and mis-detection) of the local detectors. In most applications, 

these quantities are unknown. Moreover, the local detector performances can be time varying. 

To address this challenge, we develop a fusion rule that applies a genetic algorithm to fuse the 

local detectors’ binary decisions. The proposed genetic fusion rule adapts to time varying local 

sensor error characteristics and provides near optimal performance (close to that of the Chair 

and Varshney rule) at the expense of a larger number of observations and higher computational 

overhead. 

The Chair-Varshney fusion rule requires knowledge of all local sensor performance (    and    ) 

and prior probability of hypothesis    and   . In practice, the information may not be available, 

and the performance variables may also be time varying. Studies such as [15], [16], [17] 

addressed this challenge by applying various techniques for on-line estimation of the local 
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sensor parameters, and used these estimated parameters for global decision making. Such 

approaches are however slow to converge and their performance may deteriorate when the 

parameters are time varying. 

 

Fig. 16. Flow chart of the genetic fusion algorithm 

In this chapter, we aim to design a binary fusion rule that does not that of explicitly on local 

performance parameters and prior probabilities and yet achieve comparable performance to 

that of the optimal rule defined in equation (2.7). 

For the decision fusion system shown in Fig. 16, we present a genetic fusion algorithm that 

calculates the weights of local decisions for global decision making such that each local decision 

is weighed by the decision’s current performance. We adopt the standard genetic algorithm 
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procedure. The genetic algorithm tends to produce more “descendants” for decisions with 

better performance. The number of each local decision’s descendants represents the weight of 

each local decision in the global decision making; more descendants means higher weight for 

that local decision. The global decision is made using a threshold test where the test statistic is 

dependent on the number of local decisions supporting each hypothesis. 

We apply a genetic algorithm to the distributed detection system (Fig. 5). We assume that one 

of the two states (target is present or absent) persists for enough time so that the algorithm 

can converge. Fig. 16 shows the flow chart of the genetic-algorithm based system. Before we 

provide the details about each step individually, we review some relevant genetic algorithm 

terminology as used in the context of our distributed decision fusion architecture. 

5.1  Adaptive Fusion with Genetic Algorithm 

Algorithm Input/Output 

At each stage of the algorithm, its input (initial population) is: (1) an     matrix, where   is 

the number of subsequent local decisions obtained from each of the   local sensors in the 

fusion system; and (2) an     feedback code which was calculated during the previous stage.  

The output of the algorithm at each stage is a global decision (-1; 1), plus an M-bit code which 

serves as the feedback code for the next stage. The only stage that deviates from this structure 

is the first stage, which does not use a feedback code. 

 

Fig. 17. Initial population 
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Fitness 

The fitness of each genetic code in the population is defined as follows. Let    denote the 

number of bits in a genetic code that are ‘1’. The number of majority bits is     

   (       ), and the number of minority bits is        (       ). The fitness of the 

genetic code is defined as 

        
       

 
 

Selection 

The genetic codes are selected for the procedure of ”marriage” and ”mating” based on their 

fitness scores. A genetic code with higher fitness has a higher probability to be selected. For all 

genetic codes with relatively good consistency (fitness above 0:5), the probability of getting 

selected is assigned to be 1. For all genetic codes with fitness less than 0:5, the probability of 

getting selected varies linearly as a function of the fitness scores. The selection probability 

function we have used is 

 (      )  {
                         
                                      

 

If too few or too many genetic codes are selected, we add two population control procedures 

after selection. (Too few genetic codes being selected will cause early convergence; too many 

genetic codes being selected will cause high computational cost). 

Early-Converge Prevention: if the number of genetic codes (  ) falls bellow   (number of local 

sensors) in any generation, we mutate the   genetic codes that come from N local sensors, and 

select the      of mutated codes with higher fitness. 

Population Explosion Prevention: we set an upper limit   (        in our experiment) to the 

number of genetic codes allowed after selection. If the number of genetic codes exceeds  , we 

select the   codes with the highest fitness and discard the rest. 

Marriage and Mating 

After selection, the selected genetic codes are used in marriage and mating process to generate 

the next generation of population. 



46 
 

Marriage: The probability of marriage between any two genetic codes depends on their 

similarity; codes with high similarity would have higher tendency to marry. In this study, we 

define similarity between two genetic codes    and    using the Hamming distance (HD) as 

follows 

          (   )    
  (   )

 
 

The probability of marriage between two genetic codes is defined as 

 (        (   ))            (   )
  

Mating: Once a pair of genetic codes was selected for marriage, the two codes will mate (swap 

their bits) depending on a randomly chosen crossover point. The crossover point is determined 

by selecting a random bit along the length of the genetic code and swapping the bits after that 

point (an example is shown in Fig. 18). For a 10 bit code, all 9 intersection positions are equally 

probable of being chosen as the crossover point. 

The new generation obtained after the marriage and mating process is tested against the 

algorithm termination conditions. If the termination conditions are satisfied, this new 

generation is considered as the last generation for the current decision making stage. If the 

termination conditions are not satisfied, the new generation is used for the next cycle of 

genetic algorithm. 

 

Fig. 18. Mating process of two genetic codes to produce descendant generation 

Termination Condition 
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We employ two termination conditions to control the execution of the genetic algorithm. 

Termination Condition 1: All genetic codes in a particular generation are collected and we 

compute the percentage of decisions supporting    and    in this aggregated pool. We denote 

by           as the percentage of decisions in a generation that supports           . For a 

certain generation, if the percentage of decisions supporting one hypotheses exceeds   , this 

is considered the last generation of the current decision stage. The value of   controls the 

trade-off between accuracy and time of convergence. If higher accuracy is desired,   should be 

set relatively large; on the other hand, if quick decision making is desired, T should be set 

relatively smaller. In our simulations, we set the value of T to    . 

Termination Condition 2: The maximum number of generations is set to be  . The genetic 

algorithm stops execution when the current set of genetic codes constitute the     generation. 

In our experiments we used      . 

Mutation 

We use the following procedure for mutating a bit in a genetic code. Recall our definition for 

    and     for each genetic code. Bits that belong to the ‘minority’ are flipped with 

probability _. Bits that belong to the ‘majority’ are flipped with probability  . A genetic code 

will preserve its fitness on average if   
   

   
 , and would have higher fitness on average if 

  
   

   
 . In our experiment, we use       and    

   

   
 . 

Feedback 

At the     decision stage, after obtaining the global decision using the last generation of this 

stage, the system retains the  -bit genetic code with the largest fitness in the last generation 

of the     stage. It provides this genetic code as an input into the initial generation of the 

(   )   decision stage. 

Global Decision Making 

The global decision is made based on the following threshold test 
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  (       )

  (       )
 

Here          
 and          

 are the percentage of the hypothesis in the last generation. 

The cost were assumed to be           and          . 

For computation of the threshold in (9), the knowledge of the prior probability    is required. In 

real applications, prior probabilities are seldom known. In this situation, the genetic algorithm 

can be used to aid in estimating the prior probability of the hypothesis.    can be estimated by 

the following steps. 

(1) Initial the prior probability of hypothesis    as     ̂ 
 
 (a guess). 

(2) Use the recursive expression provided below to estimate    in the     global decision 

making, 

 ̂ 
 
 

   

 
 ̂ 

   
 

 

 

         

 

   
 

Where          

  represents the percentage of the decisions supporting    in last generation 

of the     decision making stage. 

5.2  Performance of genetic fusion algorithm in simulation 

The proposed framework based on genetic algorithm was tested against simulated detection 

scenarios for performance analysis. We first fix the number of generations to show how the 

genetic fusion algorithm increases the percentage of correct decisions in each generation. We 

then compare the performance of the algorithm with and without feedback to show how the 

feedback improves the performance. We next test the fusion scheme through a simulated 

example scenario of target detection where error rates of local sensors are time varying. 

5.2.1 Decision-making with and without feedback 

We fixed the number of generations to 7. We show the performance of the fusion system with 

and without feedback. We simulated the fusion system with three different local sensors. The 
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local sensor performances were fixed with false alarm rates as 0.3524, 0.3077, 0.3417; the mis-

detection rates were 0.3123; 0.3550, 0.3136, respectively. 

 

Fig. 19. Compare the performance of genetic fusion algorithm with and without feedback 

 

TABLE II.  COMAPRE THE PERFORMANCE OF GENETIC FUSION ALGORITHM WITH AND WITHOUT FEEDBACK 

 With Feedback Without Feedback 

Global Probability of Error                    

Percentage of Correct Decision  
in the Initial Generation  

66.44% 66.44% 

Percentage of Correct Decision  
in the Last Generation 

91.52% 78.75% 

 

We present the performance improvement obtained with the application of the proposed 

algorithm in Fig. 19 and Table 2. The percentage of correct decisions in the initial population 

(local sensors’ decisions) was 66.44%. Applying the genetic algorithm for 7 generations without 

feedback, the percentage of correct decisions in the last generation was 78.75%. Incorporating 



50 
 

feedback increased the percentage of correct decisions in the last generation to 91.52%. 

Feedback reduced the global error rate from           to         . 

6.2.2 Decision-making with time varying local sensor 

For the next simulation, the number of generations was decided by the first termination 

condition. We simulated a distributed detection system with three (     ) local sensors. We 

tested the fusion algorithm with feedback under two cases: (1) local sensor performance is 

fixed; (2) local sensor performance is time-varying. Table 3 summarizes the performance of the 

proposed fusion algorithm under the two local sensor performance characteristics. 

TABLE III.  PERFORMANCE OF THE GENETIC FUSION ALGORITHM UNDER FIXED SENSOR CASE AND TIME-VARYING 

SENSOR CASE 

 Fixed Sensor Time-Varying Sensor 

Global Probability of Error                   

Percentage of Correct Decision  
in the Initial Generation 

66.44% 66.18% 

Percentage of Correct Decision  
in the Last Generation 

91.52% 91.17% 

Average number of Generation 6.23 6.22 

 

Fixed Local Sensor Performance: The local sensor performance was fixed with local false alarm 

rates as 0.3524, 0.3077, 0.3417; and mis-detection rates as 0.3123; 0.3550, 0.3136, respectively. 

Using feedback, the simulated global error rate was         . The average number of 

generations needed to obtain global decision was 6.23. 

Time-Varying Local Sensor Performance: In this case, the local sensor performance was time-

varying as shown in Fig. 20. The average false alarm rates of the three sensors were: 0.3524, 

0.3077, 0.3417; the average miss-detection rates of the three sensors were: 0.3123; 0.3550, 

0.3136, respectively. 
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Fig. 20. Local sensor performance is time-varying 

The overall percentage of correct decisions in local sensors’ decisions was improved from 66.18% 

in the initial population to 91.17% in the last generation. Using feedback, the simulated global 

error rate was         . The average number of generations needed to obtain global 

decision was 6.22. The genetic algorithm in these simulations was impervious to changes in 

local error metrics (however, it would be interesting to investigate the performance of the 

fusion system as a function of the sampling rate vs rate of change of local sensor performance.). 

5.2.3 Comparison of the genetic fusion algorithm with Chair-Varshney fusion rule 

In this section, we compare the proposed fusion algorithm with the Chair-Varshney fusion rule 

[1] which assumes precise knowledge of local sensors’ performance. The genetic fusion 

algorithm uses   bits of each local sensor’s decisions for a total of     bits to obtain a global 

decision. In order to have a fair comparison, we use the Chair-Varshney system with     

sensors each sending out a 1 bit decision to the fusion center. We vary the number of local 

sensors ( ) from 3 to 12. To simplify the calculation, we assume that the local sensors in both 

systems are identical with error rates fixed as 0.36 misdetection rate and 0.40 false-alarm rate. 

TABLE IV.  COMPARE THE PERFORMANCE OF CHAIR-VARSHNEY FUSION RULE AND GENETIC FUSION ALGORITHM 

Number of  
Local Sensors 

Global Probability of 
Error of Chair-

Varshney Fusion Rule 

Simulation Error Rate 
of Genetic Fusion 

Algorithm  without 
Feedback 

3 0.1245 0.1259 
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4 0.1082 0.1091 

5 0.0721 0.0727 

6 0.0616 0.0623 

7 0.0432 0.0449 

8 0.0373 0.0384 

9 0.0265 0.0273 

10 0.0234 0.0237 

11 0.0165 0.0170 

12 0.0150 0.0151 

 

Table 4 shows that comparison of genetic fusion algorithm (without feedback) and the Chair-

Varshney binary fusion rule. We calculate the global error rate for the fusion system applying 

Chair-Varshney binary fusion rule. For the genetic fusion algorithm without feedback, the error 

rate is the simulation error rate. From Table 4 we can see that, the genetic algorithm has nearly 

similar global error rates as compared to those obtained from the Chair-Varshney binary fusion 

rule. The simulation error rate nearly reaches the optimal bound achieved by the Chair-

Varshney rule as the number of sensors is increased. There are two additional burdens in our 

system: (1) we needed a relatively large number of decisions to develop a global decision; and 

(2) we needed several cycles (generations) of the algorithm,  which mean more computations 

and more delay. 

5.2.4 A simulated 4-Sensor example 

We consider a simulated 4-sensor detection problem. The simulation assumed four RF sensors. 

Fig. 21 shows the positions of the four sensors and the moving track of the target. As the target 

is moving around, the distances between the target and the sensors are changing. Assuming 

line of sight propagation, it is well known that the received signal power is inversely 

proportional to the square of the distance between the sensor and the target [10]. Hence, as 

the distance changes, the received power varies which in turn influences the detection rates of 

the sensors. However, the false alarm rate is only affected by noise. In the simulations, we 

assume that the sensor false alarm rate is fixed at 0.1. Fig. 22 shows the variation in the miss-
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detection rates of the four sensors. In the simulations, we assume both the local sensor 

performance parameters and prior probability of hypotheses are unknown. 

 

Fig. 21. An 4-sensor detection system and the target track 

We test the simulations when the true state changes over time but is still consistent long 

enough for the genetic fusion algorithm to converge. For each fusion method, we ran 10 

simulations and in each simulation 104 global decisions were made.  

The average simulated global error rate was          . In the final generations upon 

convergence, the percentage of the descendants of each local sensor’s decision presents the 

weights by which this sensor influences the global decision. The overall weights of all four local 

sensors were: 0.3674 for sensor 1, 0.3098 for sensor 2, 0.2811 for sensor 3, 0.0417 for sensor 4. 

Sensor 4 has the smallest overall weight, as it had the worst overall detection performance. 
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Fig. 22. Local sensors’ missed detection rate change over time as the target is moving 

We present a distributed decision fusion scheme based on the standard genetic algorithm. The 

framework aids in combining local decisions to obtain the global decision without using the 

local sensors’ performance parameters. In our simulations, the algorithm was able to adapt to 

the variations in local sensor performance. The genetic fusion algorithm showed nearly 

equivalent detection accuracy both under fixed and time-varying local error rates and achieved 

nearly equivalent performance in detection accuracy as compared to that obtained from the 

Chair-Varshney fusion rule which assumes precise knowledge of local performance rates. The 

cost of this performance was that the algorithm required large sets of local decisions to form 

the initial population. Furthermore, iterating over the steps of the genetic algorithm causes 

processing delays and requires computational overheads. 
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6 Adaptive Decision Fusion in Non-stationary Environments 

6.0 Introduction 

In chapter 6, we proposed an adaptive decision fusion with genetic algorithm under the 

condition that the environment is stationary (the true hypothesis does not change over time). 

In this chapter, we develop a hypothesis change detection mechanism for the adaptive decision 

fusion we proposed in chapter 5, so that the adaptive decision fusion can adapt the non-

stationary environments (the true hypothesis changes over time).  

The adaptive decision fusion, which we proposed in chapter 5, needs several bits of each local 

sensor decisions to obtain one global decision. In a fusion system with   local sensors, the 

fusion center collects  -bits of decisions from each local sensor, and uses these     local 

decisions to generate a global decision.  In chapter 5, we assume the true hypothesis does not 

change during the collected  -bits (stationary environment). However, in the real applications, 

this is not the case. If the true hypothesis changes during the collected  -bits (non-stationary 

environment), the fitness (which we introduce in section 5.1-Fitness) of the sensor’s genetic 

code cannot provide the correct information about the performance of the local sensors. 

Accordingly, the genetic fusion algorithm cannot function properly in this case.  

6.1 Problem of true hypothesis changing during the  -bits 

Given an error free local sensor, with the application of genetic fusion algorithm (    ), if 

the true hypothesis is “1” and does not change during the 10 bits, this sensor’s 10-bits decisions 

will be “1,1,1,1,1,1,1,1,1,1”, and the fitness of this sensor will be 1 (section 5.1-Fitness). 

However, if the true hypothesis changes from “1” to “-1”, say, at the 6th bit during the 10-bit 

segment, this sensor’s 10-bits decisions would be “1,1,1,1,1,-1,-1,-1,-1,-1”, and its fitness would 

be 0. In such situation, the decision of this error-free sensor has very large probability to be 

eliminated in the “selection” procedure (section 6.1-Selection). Therefore, when applying the 

adaptive decision fusion in the non-stationary environment (true hypothesis changes during  -

bits), the sensor’s fitness may not provide the correct information about the local sensor 

performance, and the genetic fusion algorithm may not function properly. 
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As an example, we did a simulation to show how the non-stationary environments (true 

hypothesis changes during the  -bits) decreases the performance of genetic fusion algorithm. 

We simulate a fusion system with 4 identical local sensors. Local sensor          . 

    . There are 10 cases in this simulation: the true hypothesis changes at     (  

        ) bit of the collected 10-bits. We did     tests for each case, and calculated the error 

rate based these tests. Table 5 shows the results of this simulation. 

TABLE V.  SIMULATION PERFORMANCE OF THE GENETIC FUSION ALGORITHM WHEN HYPOTHESIS 

CHANGES DURING THE  -BITS (    ) 

True hypothesis 
changes at  
(of 10-bits) 

Average Percentage of 
the true hypothesis in 
the final generation 

Global Error Rate 

1st bit 94.27%          

2nd bit 86.27%          

3rd bit 78.61%          

4th bit 66.52%          

5th bit 57.34%          

6th bit 50.12% 4        

7th bit 57.28%          

8th bit 66.63%          

9th bit 78.58%          

10th bit 86.13%   4       

 

It can be seen in Table 5, if the hypothesis-change happens at the beginning or the end of the 

 -bits, the genetic fusion algorithm can still function and the change detection is not necessary. 

However, if the hypothesis-change happens at the middle part of  -bits (   ,    ,     bits), the 

genetic fusion algorithm cannot function well. 

The Fig. 23 shows an example of the simulated global error rate of the genetic fusion algorithm 

when hypothesis changes at      ,       and       bit. When the hypothesis change does not 
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happen, the global error rate stays stable at a small value. When the hypothesis change 

happens, the global error rate increases, and can rise to nearly 50%.  

 

Fig 23: An example of the simulation performance of genetic fusion algorithm when there are 3 hypothesis-change-

points in a time period. 

6.2 Hypothesis Change Detection in Genetic Algorithm 

The non-stationary environment (true hypothesis changes during the  -bits) largely decreases 

the detection accuracy of the adaptive decision fusion algorithm. To improve the performance 

of adaptive decision fusion algorithm in non-stationary environments, we need to add a change 

detection mechanism in the adaptive decision fusion with genetic algorithm. We want the 

system to accept the decision of hypothesis change detection instead of the decision of genetic 

fusion algorithm, when there is a larger probability that the hypothesis changes during the  -

bits; and accept the decision of genetic fusion algorithm when there is a low probability that 

the hypothesis changes. 

The new mechanism first runs the genetic fusion algorithm (which we proposed in chapter 6). 

Based on the performance of genetic fusion algorithm, the system decides whether the 

decision of genetic fusion algorithm is reliable. If the system decides the decision of genetic 

fusion algorithm is reliable, it will accept the decision of genetic fusion algorithm. Otherwise, 

the system will decide to apply the hypothesis change detection and accept the decision of 

hypothesis change detection. (We will discuss how to judge the performance of genetic fusion 

algorithm and decides whether the decision of genetic fusion algorithm is reliable is section 

6.2.1.). 
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The hypothesis change detection has two procedures: (1) local sensor level detection, and (2) 

global level detection. In local sensor level detection,   (the number of local sensors) local 

sensor level decisions are made.  The     sensor level decision is made independently based on 

the information from the     sensor. The global level decision is obtained by combining all the 

  sensor level decisions. 

6.2.1 Decide whether to apply the hypothesis change detection in adaptive decision fusion 

The genetic fusion algorithm has good performance in stationary environment (true hypothesis 

change does not happen); but it cannot function well when the true hypothesis changes. 

Therefore, we want to apply the hypothesis change detection only if there is a larger probability 

that the hypothesis changes. Otherwise, we want the system to accept the decision of genetic 

fusion algorithm and there is no need to apply the hypothesis change detection.  

The system decides whether to apply the hypothesis change, based on the performance of the 

genetic fusion algorithm. If the performance of genetic fusion algorithm has a significant 

decrease in a short time (during several bits of decisions), we suspect there is a high probability 

that hypothesis change happens. 

Assuming the true hypothesis changes in the middle (.
 

 
  /

  

 bit) of the  -bits, the average 

percentage of the majority decisions in the final generation would be about 50% (from the 

statistic of the experiment results in Table 4).  

On the other hand, assuming the hypothesis does not change, the genetic fusion algorithm 

should function well and the percentage of the majority decisions in the final generation should 

not have a significant change. Therefore, we calculate (        
 ), the expected percentage of 

the majority decisions in the final generation using historical information (starting from the last 

detected-change-point), assuming the hypothesis does not change.         
  is calculated as 

the mean value of the historical percentage of the majority decisions in the final generation. 

The detected-change-point: the point that the global decision of the system changes (from    to 

   or form    to   )).  
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The genetic fusion algorithm can provide (        
 ) the true percentage of the majority 

decisions in the final generation. We consider there is a larger probability that the hypothesis 

change happens, if         
  is closer to 50%; and there is a lower probability that the 

hypothesis changes, if         
  is closer to         

 . 

We calculated (         
   ) the distance between         

  and         
 , and (         

     ) the 

distance between         
  and 50%. 

         
    |        

          
 | 

         
      |        

     | 

 If         
  is closer to 50%, the system decides to apply the hypothesis change detection and 

accept the decision of hypothesis change detection; otherwise the system accepts the decision 

of genetic fusion algorithm and does not apply hypothesis change detection. 

{
 
 

 
 

                      

                                  
                                  

               
   

                               

                                   
                      

               
   

 

6.2.2 Hypothesis change detection in sensor level 

From table 4 it can be seen that, the genetic fusion algorithm can have acceptable performance 

when the hypothesis change happens at the beginning or the end of the  -bits; and it has 

significant bad performance when hypothesis changes in the middle part (around .
 

 
  /

  

 bit) 

of the  -bits. Therefore, in the hypothesis change detection, we want to detect the change 

when the hypothesis change happens around the middle part of the   bits. Assuming a sensor 

with      , if   is an even number and the hypothesis changes at the .
 

 
  /

  

 bit of the   

bits, the expectation of the fitness of this sensor will be 0 (    ). Therefore, we consider there 

is a high probability that hypothesis-change happens during the  -bits, if the fitness of sensor 

is close to 0 (    ). 
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We consider there is a low probability that hypothesis-change happens during the  -bits, if the 

fitness of sensor does not have dramatic decrease comparing with its previous value. Assuming 

the hypothesis does not change, each sensor calculates its expected fitness (    
 ) using its 

historical fitness value.     
  is calculated as the mean value of    sensor’s historical fitness. To 

calculate     
 , the system needs to record the fitness of sensors starting from the last 

detected-change-point. 

We calculate       
   , the distance between the true value of sensor fitness (    

 ) and the 

expectation of sensor fitness (    
 ); and      

   , the distance between the true value of 

sensor fitness (    
 ) and 0 (    ) . 

     
    |    

      
 | 

     
    |    

      | 

If the true value of sensor fitness is closer to 0, then this sensor decides the hypothesis changes; 

otherwise this sensor decides the hypothesis does not change. If the sensor the hypothesis 

changes, it outputs “1”; if it decides the hypothesis does not change, it outputs “-1”. 

The     sensor-level decision   
    of hypothesis change detection are made as 

  
    {

  (      )                        
         

   

   (         )      
         

   
 

 

6.2.3 Hypothesis change detection in global level 

Once the sensor-level decisions have been made, fusion center combines all the sensor-level 

decisions to obtain the global-level decision on whether the hypothesis changes. In the fusion 

of sensor-level decisions, the sensor-level decisions are weighted by how confidence these 

sensor-level decisions are on their own decisions.  

The     sensor-level decision’s weight   
    are calculated as 

  
    

|     
         

   |
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The global-level decision   
    of the hypothesis change detection is made from the weighted 

sum of sensor-level decisions. 

  
    

{
 
 

 
   (      )                  ∑  

     
     

 

   

   (         ) ∑  
     

     

 

   

 

If the system decides the hypothesis changes, the system’s output flips the latest global 

decision of the adaptive decision fusion algorithm (   or   ); if the system decides the 

hypothesis does not change, the system’s output keeps the latest global decision of the 

adaptive decision fusion algorithm. For example, when the latest global decision decides    , if 

the hypothesis change detection decides “hypothesis changes” at current time, the system’s 

output will be   ; if the hypothesis change detection decides “hypothesis does not change” at 

current time, the system’s output will be    

Algorithm of change detection in adaptive fusion using genetic algorithm 

Part 1: The adaptive fusion system first applies genetic fusion algorithm (proposed in chapter 

6). It records the percentage of the majority decisions in the final generation of the genetic 

fusion algorithm. The system also records the fitness of all sensors. 

Part 2: Decide whether to apply hypothesis change detection 

(1) Calculate (        
 ), the expected percentage of the majority decisions in the final 

generation of the genetic fusion algorithm using the records from the last detected-

change-point, assuming the hypothesis does not change.         
  is the calculated as the 

mean value of the records. 

(2) Get (        
 ) the true value of the percentage of the majority decisions in the final 

generation of the genetic fusion algorithm. 

(3) Calculated (         
    |        

          
 | ) the distance between         

  (true 

value) and         
  (the expected value if the hypothesis does not change). 

(4) Calculated (         
    |        

     |) the distance between          
  (true value) 

and 50% (the expected value if the hypothesis changes). 
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(5) If          
               

   , apply the hypothesis change detection and accept the decision 

of hypothesis change detection. If          
               

   , accept the decision of genetic 

fusion algorithm and does not apply the hypothesis change detection. 

Part 3: Steps of hypothesis change detection 

(1) Calculate     
  (        ), expected fitness of the     sensor, assuming the hypothesis 

does not change.     
  is calculated as the mean value of each sensor’s historical fitness 

(starting from the last detected-change-point).  

(2) Get     
  (       ), the true value sensor fitness from the genetic fusion algorithm.  

(3) Calculate      
    |    

      
 |, the distance between     

  (true value) and     
  (the 

expected value if hypothesis does not change). 

(4) Calculate      
    |    

      |, (      ), the distance between     
  (true value) 

and the      (the expected value if hypothesis changes). 

(5) Get sensor-level decision on whether the hypothesis changes, 

  
    {

  (      )                        
         

   

   (         )      
         

   
 

(6) Get global-level decision on whether the hypothesis changes: 

The     sensor-level decision is weighted by, 

  
    

|     
         

   |

     
         

    

Global level decision-making of hypothesis change detection, 

  
    

{
 
 

 
   (      )                  ∑  

     
     

 

   

   (         ) ∑  
     

     

 

   

 

6.3 Simulation Performance 

We run several simulations under different circumstances to test the performance of adaptive 

decision fusion with hypothesis change detection mechanism. We first test the adaptive fusion 
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with fixed sensors. Next, we test it with time-varying sensors. At last, we investigate the 

influence of the hypothesis change rate on the performance of hypothesis change detection. 

7.3.1 Fixed local sensor 

We simulate a fusion system with 4 identical local sensors. Local sensor          . 

    . The true hypothesis changes every 100 bits, (hypothesis change rate   1 change per 

100 bits). We run     tests for each case (total 10 cases: the true hypothesis changes at the 

    (          ) bit of the 10-bits).  

TABLE VI.  SIMULATION PERFORMANCE OF THE ADAPTIVE DECISION FUSION WITH HYPOTHESIS CHANGE 

DETECTION, WHEN HYPOTHESIS CHANGES DURING THE  -BITS (    ). THE LOCAL SENSOR 

PERFORMANCE IS FIXED. 

True 
hypothesis 
changes at  
(of 10-bits) 

Average Percentage 
of the true 

hypothesis in the 
final generation 

Percentage of tests accepting the 
decision of Genetic Algorithm. 

Percentage of tests accepting the 
decision of Change Detection. 

Global Error 
Rate 

1st bit 94.27% 
100% tests accepts Genetic Algorithm 

0% tests accepts Change Detection 
         

2nd bit 86.27% 
99.9% tests accepts Genetic Algorithm 

0.1% tests accepts Change Detection 
         

3rd bit 78.61% 
91.2% tests accepts Genetic Algorithm 

8.8% tests accepts Change Detection 
         

4th bit 66.52% 
30.6% tests accepts Genetic Algorithm 

69.4% tests accepts Change Detection 
         

5th bit 57.34% 
8.5% tests accepts Genetic Algorithm 

91.5% tests accepts Change Detection 
         

6th bit 50.12% 
0.6% tests accepts Genetic Algorithm 

99.4% tests accepts Change Detection 
4        

7th bit 57.28% 
8.1% tests accepts Genetic Algorithm 

91.9% tests accepts Change Detection 
         

8th bit 66.63% 
29.7% tests accepts Genetic Algorithm 

70.3% tests accepts Change Detection 
         

9th bit 78.58% 
90.9% tests accepts Genetic Algorithm 

9.1% tests accepts Change Detection 
         

10th bit 86.13% 
99.9% tests accepts Genetic Algorithm 

0.1% tests accepts Change Detection 
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Comparing the table.4 and table.5, it can be seen that applying the hypothesis change 

detection improves the overall performance of the adaptive fusion algorithm when hypothesis 

changes. 

The Fig. 24 shows an example of the simulated global error rate of the adaptive fusion with 

hypothesis change detection when hypothesis changes every 100 bits. The Fig. 25 shows the 

comparison of the adaptive fusion with hypothesis change detection and adaptive fusion 

without hypothesis change detection. Although the global error rate still increases when the 

hypothesis changes, adding the hypothesis change detection mechanism to the adaptive fusion 

algorithm does improve the performance of the fusion system a lot. 

 

Fig 24: An example of the simulation performance of the adaptive decision fusion with hypothesis change detection, 

when there are 3 hypothesis-change-points in a time period. 

 

 

Fig 25: Comparing the simulation performance of the adaptive decision fusion with and without hypothesis change 

detection. 
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6.3.2 Time-varying local sensors 

We simulate a fusion system with 4 local sensors with different performance. Local sensor    

and    are time-varying (varying smoothly) as Fig. 26 shows. For all the local sensors, their 

average    equals 0.2, and average     equals 0.2.      . The true hypothesis changes every 

100 bits, (hypothesis change rate   1 change per 100 bits).  

 

Fig 26: Local sensor performance is time-varying 

 

TABLE VII.  SIMULATION PERFORMANCE OF THE ADAPTIVE DECISION FUSION WITH HYPOTHESIS CHANGE 

DETECTION, WHEN HYPOTHESIS CHANGES DURING THE  -BITS (    ). THE LOCAL SENSOR 

PERFORMANCE IS TIME-VARYING. 

True 
hypothesis 
changes at  
(of 10-bits) 

Average Percentage 
of the true hypothesis 
in the final generation 

Percentage of tests accepting the 
decision of Genetic Algorithm. 

Percentage of tests accepting the 
decision of Change Detection. 

Global Error 
Rate 

1st bit 95.11% 
100% tests accept Genetic Algorithm 

0% tests accept Change Detection 
         

2nd bit 87.02% 
99.9% tests accept Genetic Algorithm 

0.1% tests accept Change Detection 
         

3rd bit 78.34% 
91.2% tests accept Genetic Algorithm 

8.7% tests accept Change Detection 
         

4th bit 66.26% 
29.8% tests accept Genetic Algorithm 

70.2% tests accept Change Detection 
         

5th bit 58.17% 
8.3% tests accept Genetic Algorithm 

91.7% tests accept Change Detection 
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6th bit 50.25% 
0.6% tests accept Genetic Algorithm 

99.4% tests accept Change Detection 
         

7th bit 57.28% 
8.3% tests accept Genetic Algorithm 

91.7% tests accept Change Detection 
         

8th bit 66.20% 
29.8% tests accept Genetic Algorithm 

70.2% tests accept Change Detection 
         

9th bit 77.96% 
91.2% tests accept Genetic Algorithm 

8.8% tests accept Change Detection 
         

10th bit 86.24% 
99.9% tests accept Genetic Algorithm 

0.1% tests accept Change Detection 
         

 

Comparing with Table 5, the adaptive decision fusion with hypothesis change detection still has 

good performance when the local sensors are time-varying. The adaptive decision fusion with 

hypothesis change detection can adapt the time-varying of local sensor performance. 

6.3.3 Tests on different true-hypothesis-change-rate 

We simulate a fusion system with 4 identical local sensors. Local sensors have fixed 

performance          .     . We simulated 12 cases with different true-hypothesis-

change-rate. We compare the overall performance (average global error rate) of the 12 cases to 

investigate how the true-hypothesis-change-rate influences the performance of hypothesis 

change detection. 

TABLE VIII.  TEST THE SIMULATION PERFORMANCE OF THE ADAPTIVE DECISION FUSION WITH 

HYPOTHESIS CHANGE DETECTION ON DIFFERENT HYPOTHESIS CHANGE RATE. 

 Hypothesis Change Rate Average Global Error Rate 

Case 1 1 Change per 100 Bits 4        

Case 2 1 Change per 90 Bits 4        

Case 3 1 Change per 80 Bits 4        

Case 4 1 Change per 70 Bits          

Case 5 1 Change per 60 Bits          
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Case 6 1 Change per 50 Bits   4       

Case 7 1 Change per 40 Bits          

Case 8 1 Change per 30 Bits          

Case 9 1 Change per 20 Bits   4       

Case 10 1 Change per 15 Bits          

Case 11 1 Change per 10 Bits          

Case 12 1 Change per 8 Bits 4        

The simulation results show that the hypothesis-change-rate can have large influence on the 

performance of hypothesis change detection. When      and the hypothesis changes 

frequently ( 1 change per 30 bits), the detection performance of the hypothesis change 

detection starts to have large decrease. 

The adaptive decision fusion with genetic algorithm we proposed in chapter 6 has good 

performance in stationary environment (true hypothesis does not change). But, if the 

environment is non-stationary (true hypothesis changes), the genetic fusion algorithm cannot 

function well. To make our adaptive decision fusion algorithm be able to adapt the non-

stationary environments, we developed a hypothesis-change-detection mechanism for the 

adaptive decision fusion with genetic algorithm. We design the hypothesis change detection to 

have two procedures: (1) local sensor level detection, and (2) global level detection. In local 

sensor level detection,   (number of local sensors) local sensor level decisions are made. The 

global level decision is obtained by combining all   sensor level decisions. Adding the 

hypothesis change detection mechanism greatly improves the performance of adaptive 

decision fusion with genetic algorithm in non-stationary environments (averagely decreases the 

overall global error rate from            to 4        in our experiments). 
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7 Summary 

We investigated elements of the theory and applications of decision fusion in a parallel 

distributed detection environment.  In the domain of probabilistic decision making, the most 

common optimization criteria used at the fusion center are (1) the Bayes' criterion: 

minimization of a Bayes' risk function, and (2) the Neyman-Pearson criterion: maximization of 

detection rate under a constrained false alarm rate. In this thesis, we investigate development 

of optimal fusion algorithms under both criteria.   

We designed an optimal algorithm that computes local detector and the fusion center decision 

thresholds for a distributed binary hypothesis decision fusion problem.  The algorithm assumes 

that both the local detectors and the fusion center use the Neyman-Pearson criterion. The key 

computational requirement is to find the roots of a certain     order polynomial. We compare 

the performance of our method with the performance of the traditional Person-by-Person 

Optimization approach and that of a centralized detection scheme. 

We also delved into applications of parallel distributed detection architectures using the Chair 

and Varshney rule.  First, we developed a parallel decision fusion system where each local 

sensor is a sequential decision maker that implements the modified Wald's sequential 

probability test (SPRT) as proposed by Lee and Thomas (1984).  We evaluated the performance 

of the sensor bank by two criteria: (1) the probability of error; (2) average sample number (ASN) 

needed to achieve it. We examined three fusion rules for sequential sensors in a parallel 

configuration. We compared the performance of these rules in terms of the global error rate 

and average sample number (ASN). The first rule is First-to-decide rule:  the fusion center 

chooses one of the first set of local sensors’ decisions it receives as the global decision; the 

sensors that have not reached a decision are ignored. The second rule is the All-that-decided 

rule:  once at least one sensor has stopped sampling, we integrate all the decisions of stopped 

sensors through the Chair and Varshney decision fusion rule. The third rule is the All-sensors 

rule: once at least one sensor has stopped sampling, we combine the available decisions of the 

stopped sensor and the implied decisions of the remaining sensors. Among the three rules 
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examined, the All-sensors rule had the lowest global error rate, with the same average-sample-

number as the other two rules. 

Under the schemes where the fusion center minimizes a Bayes' risk function to optimally 

combine local detector decisions, the Chair and Varshney rule is widely popular. However, the 

rule assumes complete knowledge of the prior probabilities of the hypotheses and the error 

characteristics of the local detectors. In real applications these are usually unavailable. A major 

contribution of this thesis was to present an alternative fusion rule based on the standard 

genetic algorithm that circumvents the need for this assumption. The framework aids in 

combining local decisions to obtain the global decision without using the local sensors’ 

performance parameters and prior probabilities. In our simulations, the algorithm was able to 

adapt to the variations in local sensor performance. The genetic fusion algorithm showed 

nearly equivalent detection accuracy both under fixed and time-varying local error rates and 

achieved nearly equivalent performance in detection accuracy as compared to that obtained 

from the Chair and Varshney fusion rule. The cost of this performance was that the algorithm 

required large sets of local decisions to form the initial population. Furthermore, iterating over 

the steps of the genetic algorithm causes processing delays and requires computational 

overheads.  

When applying the adaptive fusion with genetic algorithm, it needs  -bits of each local 

sensor’s decisions to obtain a global decision. If the environment is non-stationary (the true 

hypothesis changes during collection of the  -bits), the fitness of the sensor’s genetic code can 

misrepresent the correct information which thereby would lead to improper functioning of 

adaptive fusion with genetic algorithm. To address the problem of time varying hypotheses, we 

incorporated a hypothesis change detection mechanism in the genetic algorithm setup such 

that even when the true state of the phenomenon being observed (hypothesis) changed, the 

fusion architecture could track such changes and continue decision making.  The new 

mechanism first decided whether to apply the hypothesis change detection or to accept the 

genetic algorithm's decision.  If the system decided to apply the hypothesis change detection, 

the system will accept the hypothesis change detection’s decision. On the other hand, if the 

system decided not to use the hypothesis change detection, the system global decision will 
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accept the genetic fusion algorithm’s decision. The change detection had two procedures: (1) 

local sensor level detection, and (2) global level detection. We carried out several simulations 

under different circumstances to test the performance of hypothesis change detection. We 

tested the hypothesis change detection with both fixed and time-varying sensors. We also 

investigated the influence of the hypothesis change rate on the performance of hypothesis 

change detection. With the hypothesis change detection mechanism added in the adaptive 

fusion rule, the performance of the adaptive fusion with genetic algorithm gotoulous  improved.  
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