5 research outputs found

    Optimizing the Environmental and Economic Sustainability of Remote Community Infrastructure

    Get PDF
    Remote communities such as rural villages, post-disaster housing camps, and military forward operating bases are often located in remote and hostile areas with limited or no access to established infrastructure grids. Operating these communities with conventional assets requires constant resupply, which yields a significant logistical burden, creates negative environmental impacts, and increases costs. For example, a 2000-member isolated village in northern Canada relying on diesel generators required 8.6 million USD of fuel per year and emitted 8500 tons of carbon dioxide. Remote community planners can mitigate these negative impacts by selecting sustainable technologies that minimize resource consumption and emissions. However, the alternatives often come at a higher procurement cost and mobilization requirement. To assist planners with this challenging task, this paper presents the development of a novel infrastructure sustainability assessment model capable of generating optimal tradeoffs between minimizing environmental impacts and minimizing life-cycle costs over the community’s anticipated lifespan. Model performance was evaluated using a case study of a hypothetical 500-person remote military base with 864 feasible infrastructure portfolios and 48 procedural portfolios. The case study results demonstrated the model’s novel capability to assist planners in identifying optimal combinations of infrastructure alternatives that minimize negative sustainability impacts, leading to remote communities that are more self-sufficient with reduced emissions and costs

    Optimizing the Environmental and Economic Sustainability of Contingency Base Infrastructure

    Get PDF
    Contingency bases are often located in remote areas with limited access to established infrastructure grids. This isolation leads to standalone systems comprised of inefficient, resource-dependent infrastructure, which yields a significant logistical burden, creates negative environmental impacts, and increases costs. Planners can mitigate these negative impacts by selecting sustainable technologies. However, such alternatives often come at a higher procurement cost and mobilization requirement. Accordingly, this study aims to develop and implement a novel infrastructure sustainability assessment model capable of optimizing the tradeoffs between environmental and economic performance of infrastructure alternatives

    Optimizing Cost and Performance of Infrastrucure Alternatives at Contingency Bases in a Hub-and-Spoke Network

    Get PDF
    Military contingency bases require substantial resources and funding sustain and are often not connected to an infrastructure grid. Infrastructure assets produce the required outputs for sustainment, but are often expensive and inefficient, producing a significant logistical burden. With the increasing near-peer threats of opposing military forces, there is a need for more self-sufficient contingency bases with alternatives that reduce resources usage and the cost of sustainment. Accordingly, the goal of this research is to develop an optimization model capable of selecting infrastructure alternative combinations that minimize the overall resource usage and cost of sustainment at the contingency base level

    Toward a Bio-Inspired System Architecting Framework: Simulation of the Integration of Autonomous Bus Fleets & Alternative Fuel Infrastructures in Closed Sociotechnical Environments

    Get PDF
    Cities are set to become highly interconnected and coordinated environments composed of emerging technologies meant to alleviate or resolve some of the daunting issues of the 21st century such as rapid urbanization, resource scarcity, and excessive population demand in urban centers. These cybernetically-enabled built environments are expected to solve these complex problems through the use of technologies that incorporate sensors and other data collection means to fuse and understand large sums of data/information generated from other technologies and its human population. Many of these technologies will be pivotal assets in supporting and managing capabilities in various city sectors ranging from energy to healthcare. However, among these sectors, a significant amount of attention within the recent decade has been in the transportation sector due to the flood of new technological growth and cultivation, which is currently seeing extensive research, development, and even implementation of emerging technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative xxxvi fueling sources, clean propulsion technologies, cloud/edge computing, and many other technologies. Within the current body of knowledge, it is fairly well known how many of these emerging technologies will perform in isolation as stand-alone entities, but little is known about their performance when integrated into a transportation system with other emerging technologies and humans within the system organization. This merging of new age technologies and humans can make analyzing next generation transportation systems extremely complex to understand. Additionally, with new and alternative forms of technologies expected to come in the near-future, one can say that the quantity of technologies, especially in the smart city context, will consist of a continuously expanding array of technologies whose capabilities will increase with technological advancements, which can change the performance of a given system architecture. Therefore, the objective of this research is to understand the system architecture implications of integrating different alternative fueling infrastructures with autonomous bus (AB) fleets in the transportation system within a closed sociotechnical environment. By being able to understand the system architecture implications of alternative fueling infrastructures and AB fleets, this could provide performance-based input into a more sophisticated approach or framework which is proposed as a future work of this research

    Design of a sustainable forward operating base

    No full text
    corecore