3 research outputs found

    Formulation and Validation of Multidisciplinary Design Problem on Wear and Fatigue Life of Lead Screw Actuators

    Get PDF
    Multidisciplinary design optimization has been widely applied in the optimization of large-scale complex system and also in the design and optimization of components, which are involved in multidisciplinary behaviors. The wear and fatigue life of lead screw actuators is a typical multidisciplinary problem. The wear behaviors of actuators closely relate to many factors such as loads, lubrications, materials properties, surface properties, pressures, and temperature. Therefore, the wear and fatigue life of actuators cannot be modeled without a simultaneous consideration of solid mechanics, fluid dynamics, contact mechanics, and thermal dynamics. In this paper, the wear and fatigue life of a lead screw actuator is modeled and validated. Firstly, the theory of asperity contact and Archard’s model of sliding wear are applied to estimate the amount of wear under certain circumstances. Secondly, a test platform is developed based on a standard ASTM test protocol, and the wear phenomenon at the ball-on-flat sliding is measured to validate the developed wear model. Thirdly, finite element analysis is conducted using Nastran to assess the contact stresses in the lead screw and nut assembly model. The estimated data from the three sources are finally merged to formulate a mathematical model in predicting the wear and fatigue life for the optimization of lead screw actuators

    Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation

    Full text link
    [EN] Rehabilitation robots are increasingly being developed in order to be used by injured people to perform exercise and training. As these exercises do not need wide range movements, some parallel robots with lower mobility architecture can be an ideal solution for this purpose. This paper presents the design of a new four degree-of-freedom (DOF) parallel robot for knee rehabilitation. The required four DOFs are two translations in a vertical plane and two rotations, one of them around an axis perpendicular to the vertical plane and the other one with respect to a vector normal to the instantaneous orientation of the mobile platform. These four DOFs are reached by means of two RPRR limbs and two UPS limbs linked to an articulated mobile platform with an internal DOF. Kinematics of the new mechanism are solved and the direct Jacobian is calculated. A singularity analysis is carried out and the gained DOFs of the direct singularities are calculated. Some of the singularities can be avoided by selecting suitable values of the geometric parameters of the robot. Moreover, among the found singularities, one of them can be used in order to fold up the mechanism for its transportation. it is concluded that the proposed mechanism reaches the desired output movements in order to carry out rehabilitation maneuvers in a singularity-free portion of its workspace.This work was funded by the Plan Nacional de I + D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) under the projects DPI2013-44227-R and DPI2017-84201-R.Aginaga, J.; Iriarte Goñi, X.; Plaza, A.; Mata Amela, V. (2018). Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation. Journal of Mechanical Design. 140(9). https://doi.org/10.1115/1.40401681409Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242Salgado, O., Altuzarra, O., Petuya, V., & Hernández, A. (2008). Synthesis and Design of a Novel 3T1R Fully-Parallel Manipulator. Journal of Mechanical Design, 130(4). doi:10.1115/1.2839005Briot, S., & Bonev, I. A. (2009). Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications. Journal of Mechanisms and Robotics, 1(2). doi:10.1115/1.3046125Company, O., Pierrot, F., Krut, S., Baradat, C., & Nabat, V. (2011). Par2: a spatial mechanism for fast planar two-degree-of-freedom pick-and-place applications. Meccanica, 46(1), 239-248. doi:10.1007/s11012-010-9413-xXie, F., & Liu, X.-J. (2015). Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029440Kuo, C.-H., & Dai, J. S. (2012). Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery. Journal of Medical Devices, 6(2). doi:10.1115/1.4006541Bi, Z. M. (2013). Design of a spherical parallel kinematic machine for ankle rehabilitation. Advanced Robotics, 27(2), 121-132. doi:10.1080/01691864.2012.703306Chaker, A., Mlika, A., Laribi, M. A., Romdhane, L., & Zeghloul, S. (2012). Synthesis of spherical parallel manipulator for dexterous medical task. Frontiers of Mechanical Engineering, 7(2), 150-162. doi:10.1007/s11465-012-0325-4Plitea, N., Szilaghyi, A., & Pisla, D. (2015). Kinematic analysis of a new 5-DOF modular parallel robot for brachytherapy. Robotics and Computer-Integrated Manufacturing, 31, 70-80. doi:10.1016/j.rcim.2014.07.005Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986Rastegarpanah, A., Saadat, M., & Borboni, A. (2016). Parallel Robot for Lower Limb Rehabilitation Exercises. Applied Bionics and Biomechanics, 2016, 1-10. doi:10.1155/2016/8584735Wiertsema, S. H., van Hooff, H. J. A., Migchelsen, L. A. A., & Steultjens, M. P. M. (2008). Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. The Knee, 15(2), 107-110. doi:10.1016/j.knee.2008.01.003Lopomo, N., Zaffagnini, S., Signorelli, C., Bignozzi, S., Giordano, G., Marcheggiani Muccioli, G. M., & Visani, A. (2012). An original clinical methodology for non-invasive assessment of pivot-shift test. Computer Methods in Biomechanics and Biomedical Engineering, 15(12), 1323-1328. doi:10.1080/10255842.2011.591788Chen, W., and Zhao, M., 2001, “A Novel 4-DOF Parallel Manipulator and Its Kinematic Modelling,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 3350–3355.10.1109/ROBOT.2001.933135Ghaffari, H., Payeganeh, G., & Arbabtafti, M. (2014). Kinematic design of a novel 4-DOF parallel mechanism for turbine blade machining. The International Journal of Advanced Manufacturing Technology, 74(5-8), 729-739. doi:10.1007/s00170-014-6015-0Altuzarra, O., Macho, E., Aginaga, J., & Petuya, V. (2014). Design of a solar tracking parallel mechanism with low energy consumption. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(3), 566-579. doi:10.1177/0954406214537249Gan, D., Dai, J. S., Dias, J., Umer, R., & Seneviratne, L. (2015). Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029957Kumar, N., Piccin, O., & Bayle, B. (2014). A task-based type synthesis of novel 2T2R parallel mechanisms. Mechanism and Machine Theory, 77, 59-72. doi:10.1016/j.mechmachtheory.2014.02.007Mohan, S., Mohanta, J. K., Kurtenbach, S., Paris, J., Corves, B., & Huesing, M. (2017). Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory, 112, 272-294. doi:10.1016/j.mechmachtheory.2017.03.001Wang, C., Fang, Y., & Fang, H. (2015). Novel 2R3T and 2R2T parallel mechanisms with high rotational capability. Robotica, 35(2), 401-418. doi:10.1017/s0263574715000636Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and Kinematic Analysis of a Novel 3UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks. Journal of Mechanisms and Robotics, 9(6). doi:10.1115/1.4037800Nabat, V., de la, O., Rodríguez, M., Company, O.Krut, S., and Pierrot, V., 2005, “Par4: Very High Speed Parallel Robot for Pick-and-Place,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, AB, Canada, Aug. 2–6, pp. 553–558.10.1109/IROS.2005.1545143Lambert, P., and Herder, J. L., 2015, “A Novel Parallel Haptic Device With 7 Degrees of Freedom,” IEEE World Haptics Conference (WHC), Evanston, IL, June 22–26, pp. 183–188.10.1109/WHC.2015.7177711Hoevenaars, A. G. L., Gosselin, C., Lambert, P., & Herder, J. L. (2017). A Systematic Approach for the Jacobian Analysis of Parallel Manipulators with Two End-Effectors. Mechanism and Machine Theory, 109, 171-194. doi:10.1016/j.mechmachtheory.2016.10.022Ding, X., Kong, X., & Dai, J. S. (Eds.). (2016). Advances in Reconfigurable Mechanisms and Robots II. Mechanisms and Machine Science. doi:10.1007/978-3-319-23327-7Gosselin, C., & Angeles, J. (1990). Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. doi:10.1109/70.56660Wang, J., & Gosselin, C. M. (2004). Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms. Journal of Mechanical Design, 126(1), 109-118. doi:10.1115/1.1641189Isaksson, M. (2017). Kinematically Redundant Planar Parallel Mechanisms for Optimal Singularity Avoidance. Journal of Mechanical Design, 139(4). doi:10.1115/1.4035677Aginaga, J., Zabalza, I., Altuzarra, O., & Nájera, J. (2012). Improving static stiffness of the parallel manipulator using inverse singularities. Robotics and Computer-Integrated Manufacturing, 28(4), 458-471. doi:10.1016/j.rcim.2012.02.003Ma, O., and Angeles, J., 1991, “Architecture Singularities of Platform Manipulators,” IEEE International Conference on Robotics and Automation (ICRA), Sacramento, CA, Apr. 9–11, pp. 1542–1547.10.1109/ROBOT.1991.131835Joshi, S. A., & Tsai, L.-W. (2002). Jacobian Analysis of Limited-DOF Parallel Manipulators. Journal of Mechanical Design, 124(2), 254-258. doi:10.1115/1.1469549St-Onge, B. M., & Gosselin, C. M. (2000). Singularity Analysis and Representation of the General Gough-Stewart Platform. The International Journal of Robotics Research, 19(3), 271-288. doi:10.1177/02783640022066860Merlet, J.-P. (1999). Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison between Different Geometries. The International Journal of Robotics Research, 18(9), 902-916. doi:10.1177/02783649922066646Bonev, I. A., & Ryu, J. (2001). A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators. Mechanism and Machine Theory, 36(1), 1-13. doi:10.1016/s0094-114x(00)00031-8Bonev, I. A., & Ryu, J. (2001). A new approach to orientation workspace analysis of 6-DOF parallel manipulators. Mechanism and Machine Theory, 36(1), 15-28. doi:10.1016/s0094-114x(00)00032-
    corecore