5,885 research outputs found

    Towards a Holistic Approach to Designing Theory-based Mobile Health Interventions

    Full text link
    Increasing evidence has shown that theory-based health behavior change interventions are more effective than non-theory-based ones. However, only a few segments of relevant studies were theory-based, especially the studies conducted by non-psychology researchers. On the other hand, many mobile health interventions, even those based on the behavioral theories, may still fail in the absence of a user-centered design process. The gap between behavioral theories and user-centered design increases the difficulty of designing and implementing mobile health interventions. To bridge this gap, we propose a holistic approach to designing theory-based mobile health interventions built on the existing theories and frameworks of three categories: (1) behavioral theories (e.g., the Social Cognitive Theory, the Theory of Planned Behavior, and the Health Action Process Approach), (2) the technological models and frameworks (e.g., the Behavior Change Techniques, the Persuasive System Design and Behavior Change Support System, and the Just-in-Time Adaptive Interventions), and (3) the user-centered systematic approaches (e.g., the CeHRes Roadmap, the Wendel's Approach, and the IDEAS Model). This holistic approach provides researchers a lens to see the whole picture for developing mobile health interventions

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Understanding Usability and User Acceptance of Usage-Based Insurance from Users' View

    Full text link
    Intelligent Transportation Systems (ITS) cover a variety of services related to topics such as traffic control and safe driving, among others. In the context of car insurance, a recent application for ITS is known as Usage-Based Insurance (UBI). UBI refers to car insurance policies that enable insurance companies to collect individual driving data using a telematics device. Collected data is analysed and used to offer individual discounts based on driving behaviour and to provide feedback on driving performance. Although there are plenty of advertising materials about the benefits of UBI, the user acceptance and the usability of UBI systems have not received research attention so far. To this end, we conduct two user studies: semi-structured interviews with UBI users and a qualitative analysis of 186 customer inquiries from a web forum of a German insurance company. We find that under certain circumstances, UBI provokes dangerous driving behaviour. These situations could be mitigated by making UBI transparent and the feedback customisable by drivers. Moreover, the country driving conditions, the policy conditions, and the perceived driving style influence UBI acceptance

    An object oriented Bayesian network approach for unsafe driving maneuvers prevention system

    Full text link
    © 2017 IEEE. As the main contributor to the traffic accidents, unsafe driving maneuvers have taken attentions from automobile industries. Although driving feedback systems have been developed in effort of dangerous driving reduction, it lacks of drivers awareness development. Therefore, those systems are not preventive in nature. To cover this weakness, this paper presents an approach to develop drivers awareness to prevent dangerous driving maneuvers. The approach uses Object-Oriented Bayesian Network to model hazardous situations. The result of the model can truthfully reflect a driving environment based upon situation analysis, data generated from sensors, and maneuvers detectors. In addition, it also alerts drivers when a driving situation that has high probability to cause unsafe maneuver to be detected. This model then is used to design a system, which can raise drivers awareness and prevent unsafe driving maneuvers

    Intelligent driver profiling system for cars – a basic concept

    Get PDF
    Many industries have been transformed by the provision of service solutions characterised by personalisation and customisation - most dramatically the development of the iPhone. Personalisation and customisation stand to make an impact on cars and mobility in comparable ways. The automobile industry has a major role to play in this change, with moves towards electric vehicles, auton-omous cars, and car sharing as a service. These developments are likely to bring disruptive changes to the business of car manufacturers as well as to drivers. However, in the automobile industry, both the user's preferences and demands and also safety issues need to be confronted since the frequent use of different makes and models of cars, implied by car sharing, entails several risks due to variations in car controls depending on the manufacturer. Two constituencies, in particular, are likely to experience even more difficulties than they already do at present, namely older people and those with capability variations. To overcome these challenges, and as a means to empower a wide car user base, the paper here presents a basic concept of an intelligent driver profiling system for cars: the sys-tem would enable various car characteristics to be tailored according to individual driver-dependent profiles. It is intended that wherever possible the system will personalise the characteristics of individual car components; where this is not possible, however, an initial customisation will be performed
    • …
    corecore