1,773 research outputs found

    Mutual Coupling Reduction for Dual-Band MIMO Antenna with Simple Structure

    Get PDF
    In this paper, a novel dual-band MIMO (multi¬ple input, multiple output) antenna for WLAN (wireless local area network) applications is presented. The MIMO antenna contains two dual-band antenna elements, each of which comprises a T-shaped monopole and a special ├-shaped stub resonator. Two operating bands with center frequencies of 5.5 GHz and 2.5 GHz are crested by the monopole of T shape and the stub resonator of ├ shape, accordingly. The ├-shaped stub also works as an isolation structure at the higher band, which can simplify the dual-band isolation design into a single-band problem. Moreo¬ver, the isolation is enhanced at the lower band by insert¬ing a metal strip which can cancel out original coupling. The inserted metal strip is the only additional decoupling structure in this design and has a simple texture with a compact size. The measured and simulated results reveal that the designed MIMO antenna can cover all the 2.4/5.2/5.8 GHz WLAN operating bands and within the recommended bands the isolations exceed by 20 dB

    Split Ring Resonator Inspired Dual-Band Monopole Antenna for ISM, WLAN, WIFI, and WiMAX Application

    Get PDF
    A dual-band antenna is used for several wireless networks like ISM, WLAN, WiMAX, and WiFi. The antenna\u27s uppermost element is a monopole shape with a rectangular protrusion. Antennas are created in CST. Using a 19-millimetre-wide by 31-millimetre-long FR4 substrate, the antenna is created in a design environment. Due to the SRR printing in the ground and the antenna\u27s defective ground structure, the antenna is able to achieve dual resonance. A split ring resonator printed at the base also helps achieve a second resonance. With the help of a parameter analysis, we can pick the optimal proportions for the design. The antenna resonates at both 2.3 and 5.8 GHz. We construct and test the antenna. The results obtained through simulation are equivalent to those obtained from measurements in terms of s11, gain, and directivity, as well as E-plane and H-plane patterns. Because of its compact size, consistent radiation pattern, dual-band use, and excellent impedance matching and bandwidth, the suggested antenna is an excellent choice for use in ISM networks and other wireless applications

    A Compact Printed Monopole Antenna for Dual-band RFID and WLAN Applications

    Get PDF
    Design of a simple and compact microstrip-fed printed monopole antenna (PMA) for applications in wireless local area network (WLAN) and radio frequency identification (RFID) is presented. The dual-band operation is achieved from the 9-shaped folded antenna which is printed on a non-conductor backed dielectric. Measured percentage impedance bandwidth of the PMA at the center frequencies of 2.43 GHz and 5.24 GHz are 33.13 (2.14 GHz to 2.99 GHz) and 36.43 (4.40 GHz to 6.36 GHz) respectively. Consistent omnidirectional radiation patterns have been observed in both the frequency bands from the experimental results. The proposed antenna is simple in design and compact in size. It exhibits broadband impedance matching, consistent omnidirectional radiation patterns and appropriate gain characteristics (>2.5 dBi) in the RFID and WLAN frequency regions

    A Coplanar Waveguide Fed Hexagonal Shape Ultra Wide Band Antenna with WiMAX and WLAN Band Rejection

    Get PDF
    In this paper, a coplanar waveguide (CPW) fed hexagonal shape planar antenna has been considered for ultra-wide band (UWB). This antenna is then modified to obtain dual band rejection. The Wireless Local Area Network (WLAN) and Wireless Microwave Access (WiMAX) band rejections are realized by symmetrically incorporating a pair of L-shape slots within the ground plane as well as a couple of I-shape stubs inserted on the bottom side of radiating patch. The proposed antenna has stop bands of 5.05-5.92 GHz and 3.19-3.7 GHz while maintaining the wideband performance from 2.88 - 13.71 GHz with reflection coefficient of ≤ -10 dB. The antenna exhibits satisfactory omni-directional radiation characteristics throughout its operating band. The peak gain varies from 2 dB to 6 dB in the entire UWB frequency regions except at the notch bands. Surface current distributions are used to analyze the effects of the L-slot and I-shape stub. The measured group delay has small variation within the operating band except notch bands and hence the proposed antenna may be suitable for UWB applications

    A Multiband CPW-Fed Slot Antenna with Fractal Stub and Parasitic Line

    Get PDF
    This paper presents a multiband CPW-fed slot antenna with fractal stub and parasitic line. The conventional wideband slot antenna with fractal stub is modified by inserting the parasitic line surrounding the fractal stub that affects the attribution to be a multiband operation suitable for some applications in wireless communication systems. The parasitic line surrounding the fractal stub can generate a dual-notched frequency that can be controlled by varying the parameters of the parasitic structure. The lengths of slit and stub on both sides of the parasitic line can control the lower and higher notched frequencies, respectively. Additionally, the prototype of the proposed antenna can operate and cover the applications of DCS 1800, WiMAX IEEE 802.16, WLAN IEEE 802.11a/b/g, and IMT advance system

    A Codesigned Compact Dual-Band Filtering Antenna with PIN Loaded for WLAN Applications

    Get PDF
    A codesigned compact dual-band filtering antenna incorporating a PIN diode for 2.45/5.2 GHz wireless local area network (WLAN) applications is proposed in this paper. The integrated filtering antenna system consists of a simple monopole radiator, a microstrip dual-band band-pass filter, and a PIN diode. The performance of the filtering antenna is notably promoted by optimizing the impedance between the antenna and the band-pass filter, with good selectivity and out-of-band rejection. The design process follows the approach of the synthesis of band-pass filter. In addition, the PIN diode is incorporated in the filtering antenna for further size reduction, which also widens the coverage of the bandwidth by about 230% for 2.4 GHz WLAN. With the presence of small size and good filtering performances, the proposed filtering antenna is a good candidate for the wireless communication systems. Prototypes of the proposed filtering antenna incorporating a PIN diode are fabricated and measured. The measured results including return losses and radiation patterns are presented

    Wideband and UWB antennas for wireless applications. A comprehensive review

    Get PDF
    A comprehensive review concerning the geometry, the manufacturing technologies, the materials, and the numerical techniques, adopted for the analysis and design of wideband and ultrawideband (UWB) antennas for wireless applications, is presented. Planar, printed, dielectric, and wearable antennas, achievable on laminate (rigid and flexible), and textile dielectric substrates are taken into account. The performances of small, low-profile, and dielectric resonator antennas are illustrated paying particular attention to the application areas concerning portable devices (mobile phones, tablets, glasses, laptops, wearable computers, etc.) and radio base stations. This information provides a guidance to the selection of the different antenna geometries in terms of bandwidth, gain, field polarization, time-domain response, dimensions, and materials useful for their realization and integration in modern communication systems

    A Compact Tri-band Printed Antenna for MIMO Applications

    Get PDF
    In this paper, a compact tri-band printed multi-input multi-output (MIMO) antenna with high isolation is presented to operate within WLAN and WiMAX frequency bands. By adopting a rectangular open-ended slot combined with a rectangular strip with an inverted L-shaped open-ended slot, three operating frequency bands can be obtained. The proposed compact MIMO antenna occupies an overall size of 19×33 mm2. Good port-to-port isolation is obtained. The simulated and measured results show that the presented antenna is suitable for multiband MIMO applications

    A Frequency-Reconfigurable Monopole Antenna with Switchable Stubbed Ground Structure

    Get PDF
    A frequency-reconfigurable coplanar-waveguide (CPW) fed monopole antenna using switchable stubbed ground structure is presented. Four PIN diodes are employed in the stubs stretching from the ground to make the antenna reconfigurable in three operating modes: a single-band mode (2.4-2.9 GHz), a dual-band mode (2.4-2.9 GHz/5.09-5.47 GHz) and a triple-band mode (3.7-4.26 GHz/5.3-6.3 GHz/8.0-8.8 GHz). The monopole antenna is resonating at 2.4 GHz, while the stubs produce other operating frequency bands covering a number of wireless communication systems, including WLAN, WiMAX, C-band, and ITU. Furthermore, an optimized biasing network has been integrated into this antenna, which has little influence on the performance of the antenna. This paper presents, compares and discusses the simulated and measured results
    corecore