6 research outputs found

    A Computational Comparison of Optimization Methods for the Golomb Ruler Problem

    Full text link
    The Golomb ruler problem is defined as follows: Given a positive integer n, locate n marks on a ruler such that the distance between any two distinct pair of marks are different from each other and the total length of the ruler is minimized. The Golomb ruler problem has applications in information theory, astronomy and communications, and it can be seen as a challenge for combinatorial optimization algorithms. Although constructing high quality rulers is well-studied, proving optimality is a far more challenging task. In this paper, we provide a computational comparison of different optimization paradigms, each using a different model (linear integer, constraint programming and quadratic integer) to certify that a given Golomb ruler is optimal. We propose several enhancements to improve the computational performance of each method by exploring bound tightening, valid inequalities, cutting planes and branching strategies. We conclude that a certain quadratic integer programming model solved through a Benders decomposition and strengthened by two types of valid inequalities performs the best in terms of solution time for small-sized Golomb ruler problem instances. On the other hand, a constraint programming model improved by range reduction and a particular branching strategy could have more potential to solve larger size instances due to its promising parallelization features

    Antenna Systems

    Get PDF
    This book offers an up-to-date and comprehensive review of modern antenna systems and their applications in the fields of contemporary wireless systems. It constitutes a useful resource of new material, including stochastic versus ray tracing wireless channel modeling for 5G and V2X applications and implantable devices. Chapters discuss modern metalens antennas in microwaves, terahertz, and optical domain. Moreover, the book presents new material on antenna arrays for 5G massive MIMO beamforming. Finally, it discusses new methods, devices, and technologies to enhance the performance of antenna systems

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Sparse Array Signal Processing: New Array Geometries, Parameter Estimation, and Theoretical Analysis

    Get PDF
    Array signal processing focuses on an array of sensors receiving the incoming waveforms in the environment, from which source information, such as directions of arrival (DOA), signal power, amplitude, polarization, and velocity, can be estimated. This topic finds ubiquitous applications in radar, astronomy, tomography, imaging, and communications. In these applications, sparse arrays have recently attracted considerable attention, since they are capable of resolving O(N2) uncorrelated source directions with N physical sensors. This is unlike the uniform linear arrays (ULA), which identify at most N-1 uncorrelated sources with N sensors. These sparse arrays include minimum redundancy arrays (MRA), nested arrays, and coprime arrays. All these arrays have an O(N2)-long central ULA segment in the difference coarray, which is defined as the set of differences between sensor locations. This O(N2) property makes it possible to resolve O(N2) uncorrelated sources, using only N physical sensors. The main contribution of this thesis is to provide a new direction for array geometry and performance analysis of sparse arrays in the presence of nonidealities. The first part of this thesis focuses on designing novel array geometries that are robust to effects of mutual coupling. It is known that, mutual coupling between sensors has an adverse effect on the estimation of DOA. While there are methods to counteract this through appropriate modeling and calibration, they are usually computationally expensive, and sensitive to model mismatch. On the other hand, sparse arrays, such as MRA, nested arrays, and coprime arrays, have reduced mutual coupling compared to ULA, but all of these have their own disadvantages. This thesis introduces a new array called the super nested array, which has many of the good properties of the nested array, and at the same time achieves reduced mutual coupling. Many theoretical properties are proved and simulations are included to demonstrate the superior performance of super nested arrays in the presence of mutual coupling. Two-dimensional planar sparse arrays with large difference coarrays have also been known for a long time. These include billboard arrays, open box arrays (OBA), and 2D nested arrays. However, all of them have considerable mutual coupling. This thesis proposes new planar sparse arrays with the same large difference coarrays as the OBA, but with reduced mutual coupling. The new arrays include half open box arrays (HOBA), half open box arrays with two layers (HOBA-2), and hourglass arrays. Among these, simulations show that hourglass arrays have the best estimation performance in presence of mutual coupling. The second part of this thesis analyzes the performance of sparse arrays from a theoretical perspective. We first study the Cramér-Rao bound (CRB) for sparse arrays, which poses a lower bound on the variances of unbiased DOA estimators. While there exist landmark papers on the study of the CRB in the context of array processing, the closed-form expressions available in the literature are not applicable in the context of sparse arrays for which the number of identifiable sources exceeds the number of sensors. This thesis derives a new expression for the CRB to fill this gap. Based on the proposed CRB expression, it is possible to prove the previously known experimental observation that, when there are more sources than sensors, the CRB stagnates to a constant value as the SNR tends to infinity. It is also possible to precisely specify the relation between the number of sensors and the number of uncorrelated sources such that these sources could be resolved. Recently, it has been shown that correlation subspaces, which reveal the structure of the covariance matrix, help to improve some existing DOA estimators. However, the bases, the dimension, and other theoretical properties of correlation subspaces remain to be investigated. This thesis proposes generalized correlation subspaces in one and multiple dimensions. This leads to new insights into correlation subspaces and DOA estimation with prior knowledge. First, it is shown that the bases and the dimension of correlation subspaces are fundamentally related to difference coarrays, which were previously found to be important in the study of sparse arrays. Furthermore, generalized correlation subspaces can handle certain forms of prior knowledge about source directions. These results allow one to derive a broad class of DOA estimators with improved performance. It is empirically known that the coarray structure is susceptible to sensor failures, and the reliability of sparse arrays remains a significant but challenging topic for investigation. This thesis advances a general theory for quantifying such robustness, by studying the effect of sensor failure on the difference coarray. We first present the (k-)essentialness property, which characterizes the combinations of the faulty sensors that shrink the difference coarray. Based on this, the notion of (k-)fragility is proposed to quantify the reliability of sparse arrays with faulty sensors, along with comprehensive studies of their properties. These novel concepts provide quite a few insights into the interplay between the array geometry and its robustness. For instance, for the same number of sensors, it can be proved that ULA is more robust than the coprime array, and the coprime array is more robust than the nested array. Rigorous development of these ideas leads to expressions for the probability of coarray failure, as a function of the probability of sensor failure. The thesis concludes with some remarks on future directions and open problems.</p
    corecore