909 research outputs found

    Compactly Supported Wavelets Derived From Legendre Polynomials: Spherical Harmonic Wavelets

    Full text link
    A new family of wavelets is introduced, which is associated with Legendre polynomials. These wavelets, termed spherical harmonic or Legendre wavelets, possess compact support. The method for the wavelet construction is derived from the association of ordinary second order differential equations with multiresolution filters. The low-pass filter associated with Legendre multiresolution analysis is a linear phase finite impulse response filter (FIR).Comment: 6 pages, 6 figures, 1 table In: Computational Methods in Circuits and Systems Applications, WSEAS press, pp.211-215, 2003. ISBN: 960-8052-88-

    Design of doubly-complementary IIR digital filters using a single complex allpass filter, with multirate applications

    Get PDF
    It is shown that a large class of real-coefficient doubly-complementary IIR transfer function pairs can be implemented by means of a single complex allpass filter. For a real input sequence, the real part of the output sequence corresponds to the output of one of the transfer functions G(z) (for example, lowpass), whereas the imaginary part of the output sequence corresponds to its "complementary" filter H(z)(for example, highpass). The resulting implementation is structurally lossless, and hence the implementations of G(z) and H(z) have very low passband sensitivity. Numerical design examples are included, and a typical numerical example shows that the new implementation with 4 bits per multiplier is considerably better than a direct form implementation with 9 bits per multiplier. Multirate filter bank applications (quadrature mirror filtering) are outlined

    Digital Filters and Signal Processing

    Get PDF
    Digital filters, together with signal processing, are being employed in the new technologies and information systems, and are implemented in different areas and applications. Digital filters and signal processing are used with no costs and they can be adapted to different cases with great flexibility and reliability. This book presents advanced developments in digital filters and signal process methods covering different cases studies. They present the main essence of the subject, with the principal approaches to the most recent mathematical models that are being employed worldwide

    Digital Filters

    Get PDF
    The new technology advances provide that a great number of system signals can be easily measured with a low cost. The main problem is that usually only a fraction of the signal is useful for different purposes, for example maintenance, DVD-recorders, computers, electric/electronic circuits, econometric, optimization, etc. Digital filters are the most versatile, practical and effective methods for extracting the information necessary from the signal. They can be dynamic, so they can be automatically or manually adjusted to the external and internal conditions. Presented in this book are the most advanced digital filters including different case studies and the most relevant literature

    An adaptive-order rational Arnoldi method for model-order reductions of linear time-invariant systems

    Get PDF
    AbstractThis work proposes a model reduction method, the adaptive-order rational Arnoldi (AORA) method, to be applied to large-scale linear systems. It is based on an extension of the classical multi-point Padé approximation (or the so-called multi-point moment matching), using the rational Arnoldi iteration approach. Given a set of predetermined expansion points, an exact expression for the error between the output moment of the original system and that of the reduced-order system, related to each expansion point, is derived first. In each iteration of the proposed adaptive-order rational Arnoldi algorithm, the expansion frequency corresponding to the maximum output moment error will be chosen. Hence, the corresponding reduced-order model yields the greatest improvement in output moments among all reduced-order models of the same order. A detailed theoretical study is described. The proposed method is very appropriate for large-scale electronic systems, including VLSI interconnect models and digital filter designs. Several examples are considered to demonstrate the effectiveness and efficiency of the proposed method

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed

    34th Midwest Symposium on Circuits and Systems-Final Program

    Get PDF
    Organized by the Naval Postgraduate School Monterey California. Cosponsored by the IEEE Circuits and Systems Society. Symposium Organizing Committee: General Chairman-Sherif Michael, Technical Program-Roberto Cristi, Publications-Michael Soderstrand, Special Sessions- Charles W. Therrien, Publicity: Jeffrey Burl, Finance: Ralph Hippenstiel, and Local Arrangements: Barbara Cristi
    corecore