36 research outputs found

    Short-length Low-density Parity-check Codes: Construction and Decoding Algorithms

    Get PDF
    Error control coding is an essential part of modern communications systems. LDPC codes have been demonstrated to offer performance near the fundamental limits of channels corrupted by random noise. Optimal maximum likelihood decoding of LDPC codes is too complex to be practically useful even at short block lengths and so a graph-based message passing decoder known as the belief propagation algorithm is used instead. In fact, on graphs without closed paths known as cycles the iterative message passing decoding is known to be optimal and may converge in a single iteration, although identifying the message update schedule which allows single-iteration convergence is not trivial. At finite block lengths graphs without cycles have poor minimum distance properties and perform poorly even under optimal decoding. LDPC codes with large block length have been demonstrated to offer performance close to that predicted for codes of infinite length, as the cycles present in the graph are quite long. In this thesis, LDPC codes of shorter length are considered as they offer advantages in terms of latency and complexity, at the cost of performance degradation from the increased number of short cycles in the graph. For these shorter LDPC codes, the problems considered are: First, improved construction of structured and unstructured LDPC code graphs of short length with a view to reducing the harmful effects of the cycles on error rate performance, based on knowledge of the decoding process. Structured code graphs are particularly interesting as they allow benefits in encoding and decoding complexity and speed. Secondly, the design and construction of LDPC codes for the block fading channel, a particularly challenging scenario from the point of view of error control code design. Both established and novel classes of codes for the channel are considered. Finally the decoding of LDPC codes by the belief propagation algorithm is considered, in particular the scheduling of messages passed in the iterative decoder. A knowledge-aided approach is developed based on message reliabilities and residuals to allow fast convergence and significant improvements in error rate performance

    Multi-Step Knowledge-Aided Iterative ESPRIT for Direction Finding

    Full text link
    In this work, we propose a subspace-based algorithm for DOA estimation which iteratively reduces the disturbance factors of the estimated data covariance matrix and incorporates prior knowledge which is gradually obtained on line. An analysis of the MSE of the reshaped data covariance matrix is carried out along with comparisons between computational complexities of the proposed and existing algorithms. Simulations focusing on closely-spaced sources, where they are uncorrelated and correlated, illustrate the improvements achieved.Comment: 7 figures. arXiv admin note: text overlap with arXiv:1703.1052
    corecore