272 research outputs found

    Design of LDPC Code Ensembles with Fast Convergence Properties

    Full text link
    The design of low-density parity-check (LDPC) code ensembles optimized for a finite number of decoder iterations is investigated. Our approach employs EXIT chart analysis and differential evolution to design such ensembles for the binary erasure channel and additive white Gaussian noise channel. The error rates of codes optimized for various numbers of decoder iterations are compared and it is seen that in the cases considered, the best performance for a given number of decoder iterations is achieved by codes which are optimized for this particular number. The design of generalized LDPC (GLDPC) codes is also considered, showing that these structures can offer better performance than LDPC codes for low-iteration-number designs. Finally, it is illustrated that LDPC codes which are optimized for a small number of iterations exhibit significant deviations in terms of degree distribution and weight enumerators with respect to LDPC codes returned by more conventional design tools.Comment: 6 pages, 5 figures, Submitted to the 3rd International Black Sea Conference on Communications and Networking (IEEE BlackSeaCom 2015

    A Fast Convergence Density Evolution Algorithm for Optimal Rate LDPC Codes in BEC

    Full text link
    We derive a new fast convergent Density Evolution algorithm for finding optimal rate Low-Density Parity-Check (LDPC) codes used over the binary erasure channel (BEC). The fast convergence property comes from the modified Density Evolution (DE), a numerical method for analyzing the behavior of iterative decoding convergence of a LDPC code. We have used the method of [16] for designing of a LDPC code with optimal rate. This has been done for a given parity check node degree distribution, erasure probability and specified DE constraint. The fast behavior of DE and found optimal rate with this method compare with the previous DE constraint.Comment: This Paper is a draft of final paper which represented in 7th International Symposium on Telecommunications (IST'2014

    Capacity-Achieving Ensembles of Accumulate-Repeat-Accumulate Codes for the Erasure Channel with Bounded Complexity

    Full text link
    The paper introduces ensembles of accumulate-repeat-accumulate (ARA) codes which asymptotically achieve capacity on the binary erasure channel (BEC) with {\em bounded complexity}, per information bit, of encoding and decoding. It also introduces symmetry properties which play a central role in the construction of capacity-achieving ensembles for the BEC with bounded complexity. The results here improve on the tradeoff between performance and complexity provided by previous constructions of capacity-achieving ensembles of codes defined on graphs. The superiority of ARA codes with moderate to large block length is exemplified by computer simulations which compare their performance with those of previously reported capacity-achieving ensembles of LDPC and IRA codes. The ARA codes also have the advantage of being systematic.Comment: Submitted to IEEE Trans. on Information Theory, December 1st, 2005. Includes 50 pages and 13 figure

    Spatially Coupled LDPC Codes Constructed from Protographs

    Full text link
    In this paper, we construct protograph-based spatially coupled low-density parity-check (SC-LDPC) codes by coupling together a series of L disjoint, or uncoupled, LDPC code Tanner graphs into a single coupled chain. By varying L, we obtain a flexible family of code ensembles with varying rates and frame lengths that can share the same encoding and decoding architecture for arbitrary L. We demonstrate that the resulting codes combine the best features of optimized irregular and regular codes in one design: capacity approaching iterative belief propagation (BP) decoding thresholds and linear growth of minimum distance with block length. In particular, we show that, for sufficiently large L, the BP thresholds on both the binary erasure channel (BEC) and the binary-input additive white Gaussian noise channel (AWGNC) saturate to a particular value significantly better than the BP decoding threshold and numerically indistinguishable from the optimal maximum a-posteriori (MAP) decoding threshold of the uncoupled LDPC code. When all variable nodes in the coupled chain have degree greater than two, asymptotically the error probability converges at least doubly exponentially with decoding iterations and we obtain sequences of asymptotically good LDPC codes with fast convergence rates and BP thresholds close to the Shannon limit. Further, the gap to capacity decreases as the density of the graph increases, opening up a new way to construct capacity achieving codes on memoryless binary-input symmetric-output (MBS) channels with low-complexity BP decoding.Comment: Submitted to the IEEE Transactions on Information Theor

    On a Low-Rate TLDPC Code Ensemble and the Necessary Condition on the Linear Minimum Distance for Sparse-Graph Codes

    Full text link
    This paper addresses the issue of design of low-rate sparse-graph codes with linear minimum distance in the blocklength. First, we define a necessary condition which needs to be satisfied when the linear minimum distance is to be ensured. The condition is formulated in terms of degree-1 and degree-2 variable nodes and of low-weight codewords of the underlying code, and it generalizies results known for turbo codes [8] and LDPC codes. Then, we present a new ensemble of low-rate codes, which itself is a subclass of TLDPC codes [4], [5], and which is designed under this necessary condition. The asymptotic analysis of the ensemble shows that its iterative threshold is situated close to the Shannon limit. In addition to the linear minimum distance property, it has a simple structure and enjoys a low decoding complexity and a fast convergence.Comment: submitted to IEEE Trans. on Communication

    Density Evolution for Asymmetric Memoryless Channels

    Full text link
    Density evolution is one of the most powerful analytical tools for low-density parity-check (LDPC) codes and graph codes with message passing decoding algorithms. With channel symmetry as one of its fundamental assumptions, density evolution (DE) has been widely and successfully applied to different channels, including binary erasure channels, binary symmetric channels, binary additive white Gaussian noise channels, etc. This paper generalizes density evolution for non-symmetric memoryless channels, which in turn broadens the applications to general memoryless channels, e.g. z-channels, composite white Gaussian noise channels, etc. The central theorem underpinning this generalization is the convergence to perfect projection for any fixed size supporting tree. A new iterative formula of the same complexity is then presented and the necessary theorems for the performance concentration theorems are developed. Several properties of the new density evolution method are explored, including stability results for general asymmetric memoryless channels. Simulations, code optimizations, and possible new applications suggested by this new density evolution method are also provided. This result is also used to prove the typicality of linear LDPC codes among the coset code ensemble when the minimum check node degree is sufficiently large. It is shown that the convergence to perfect projection is essential to the belief propagation algorithm even when only symmetric channels are considered. Hence the proof of the convergence to perfect projection serves also as a completion of the theory of classical density evolution for symmetric memoryless channels.Comment: To appear in the IEEE Transactions on Information Theor

    Spatially Coupled Codes and Optical Fiber Communications: An Ideal Match?

    Full text link
    In this paper, we highlight the class of spatially coupled codes and discuss their applicability to long-haul and submarine optical communication systems. We first demonstrate how to optimize irregular spatially coupled LDPC codes for their use in optical communications with limited decoding hardware complexity and then present simulation results with an FPGA-based decoder where we show that very low error rates can be achieved and that conventional block-based LDPC codes can be outperformed. In the second part of the paper, we focus on the combination of spatially coupled LDPC codes with different demodulators and detectors, important for future systems with adaptive modulation and for varying channel characteristics. We demonstrate that SC codes can be employed as universal, channel-agnostic coding schemes.Comment: Invited paper to be presented in the special session on "Signal Processing, Coding, and Information Theory for Optical Communications" at IEEE SPAWC 201

    On the Convergence Speed of Spatially Coupled LDPC Ensembles

    Get PDF
    Spatially coupled low-density parity-check codes show an outstanding performance under the low-complexity belief propagation (BP) decoding algorithm. They exhibit a peculiar convergence phenomenon above the BP threshold of the underlying non-coupled ensemble, with a wave-like convergence propagating through the spatial dimension of the graph, allowing to approach the MAP threshold. We focus on this particularly interesting regime in between the BP and MAP thresholds. On the binary erasure channel, it has been proved that the information propagates with a constant speed toward the successful decoding solution. We derive an upper bound on the propagation speed, only depending on the basic parameters of the spatially coupled code ensemble such as degree distribution and the coupling factor ww. We illustrate the convergence speed of different code ensembles by simulation results, and show how optimizing degree profiles helps to speed up the convergence.Comment: 11 pages, 6 figure
    • …
    corecore