2,869 research outputs found

    A flexible low-cost, high-precision, single interface electrical impedance tomography system for breast cancer detection using FPGA

    Get PDF
    Typically, in multi-frequency Electrical Impedance Tomography (EIT) systems, a current is applied and the voltages developed across the subject are detected. However, due to the complexity of designing stable current sources, there has been mention in the literature of applying a voltage to the subject whilst measuring the consequent current flow. This paper presents a comparative study between the two techniques in a novel design suitable for the detection of breast cancers. The suggested instrument borrows the best features of both the injection of current and the application of voltage, circumventing their limitations. Furthermore, the system has a common patient-electrode interface for both methodologies, whilst the control of the system and the necessary signal processing is carried out in a field programmable gate array (FPGA). Through this novel system, wide-bandwidth, low-noise, as well as high-speed (frame rate) can be achieved

    Electrical Impedance Tomography for Biomedical Applications: Circuits and Systems Review

    Get PDF
    There has been considerable interest in electrical impedance tomography (EIT) to provide low-cost, radiation-free, real-time and wearable means for physiological status monitoring. To be competitive with other well-established imaging modalities, it is important to understand the requirements of the specific application and determine a suitable system design. This paper presents an overview of EIT circuits and systems including architectures, current drivers, analog front-end and demodulation circuits, with emphasis on integrated circuit implementations. Commonly used circuit topologies are detailed, and tradeoffs are discussed to aid in choosing an appropriate design based on the application and system priorities. The paper also describes a number of integrated EIT systems for biomedical applications, as well as discussing current challenges and possible future directions

    The Investigation and Implementation of electrical Impedance Tomography Hardware System

    Get PDF
    Electrical impedance tomography (EIT) is a medical imaging technology that provides a tomographic representation of the distribution of electrical impedance within the body. As the electrical impedance varies for different body tissues, it is possible to characterize tissues from the images and to detect physiological events. EIT systems have been developed from applying a single signal frequency to a range of frequencies. Imaging at multiple frequencies significantly improves the ability to characterize and differentiate heterogeneity within the region of interest. Applications of EIT are limited by its poor resolution as a consequence of limited number of electrodes and lack of independently published measurements. In a practical EIT system design the parallel structure is normally adopted as it provides a real time monitoring structure. However, there is a difficulty in expanding to a 2-dimensitional or 3-dimensitional high resolution imaging system, as the number of electrodes increase. In this thesis, a serial structure spectrum EIT system has been investigated and developed. Modelling of the electrical circuit has shown that the system bandwidth is degraded primarily by the signal transmission in the coaxial cable and multiplexer. To remove the capacitive effect of these components, a distribute system concept has been developed. The concept uses active electrodes in which a current source and a front end amplifier are embedded in the electrode which makes direct contact with the tissue being measured. The active electrode is based on the Howland current source. The required high output impedance of Howland current source can be realised by matching the two resistor arms. However, from the electrical equivalent circuit analysis the actual output impedance of this circuit was found to be degraded by the op-amp' s limited open loop gain, especially at higher frequencies. To solve the problem, the author describes in detail a novel method of compensating for the above effects. Subsequent circuit tests showed significant improvement after the compensation. Further, to improve the small signal noise ratio a programmable gain amplifier to adapt the frame data measurement was developed. These developments have led to the feasibility of active electrodes. The thesis describes in detail the development, of the MK2 EIT system which is presented as the output of this research

    Advances in Integrated Circuits and Systems for Wearable Biomedical Electrical Impedance Tomography

    Get PDF
    Electrical impedance tomography (EIT) is an impedance mapping technique that can be used to image the inner impedance distribution of the subject under test. It is non-invasive, inexpensive and radiation-free, while at the same time it can facilitate long-term and real-time dynamic monitoring. Thus, EIT lends itself particularly well to the development of a bio-signal monitoring/imaging system in the form of wearable technology. This work focuses on EIT system hardware advancement using complementary metal oxide semiconductor (CMOS) technology. It presents the design and testing of application specific integrated circuit (ASIC) and their successful use in two bio-medical applications, namely, neonatal lung function monitoring and human-machine interface (HMI) for prosthetic hand control. Each year fifteen million babies are born prematurely, and up to 30% suffer from lung disease. Although respiratory support, especially mechanical ventilation, can improve their survival, it also can cause injury to their vulnerable lungs resulting in severe and chronic pulmonary morbidity lasting into adulthood, thus an integrated wearable EIT system for neonatal lung function monitoring is urgently needed. In this work, two wearable belt systems are presented. The first belt features a miniaturized active electrode module built around an analog front-end ASIC which is fabricated with 0.35-µm high-voltage process technology with ±9 V power supplies and occupies a total die area of 3.9 mm². The ASIC offers a high power active current driver capable of up to 6 mAp-p output, and wideband active buffer for EIT recording as well as contact impedance monitoring. The belt has a bandwidth of 500 kHz, and an image frame rate of 107 frame/s. To further improve the system, the active electrode module is integrated into one ASIC. It contains a fully differential current driver, a current feedback instrumentation amplifier (IA), a digital controller and multiplexors with a total die area of 9.6 mm². Compared to the conventional active electrode architecture employed in the first EIT belt, the second belt features a new architecture. It allows programmable flexible electrode current drive and voltage sense patterns under simple digital control. It has intimate connections to the electrodes for the current drive and to the IA for direct differential voltage measurement providing superior common-mode rejection ratio (CMRR) up to 74 dB, and with active gain, the noise level can be reduced by a factor of √3 using the adjacent scan. The second belt has a wider operating bandwidth of 1 MHz and multi-frequency operation. The image frame rate is 122 frame/s, the fastest wearable EIT reported to date. It measures impedance with 98% accuracy and has less than 0.5 Ω and 1° variation across all channels. In addition the ASIC facilitates several other functionalities to provide supplementary clinical information at the bedside. With the advancement of technology and the ever-increasing fusion of computer and machine into daily life, a seamless HMI system that can recognize hand gestures and motions and allow the control of robotic machines or prostheses to perform dexterous tasks, is a target of research. Originally developed as an imaging technique, EIT can be used with a machine learning technique to track bones and muscles movement towards understanding the human user’s intentions and ultimately controlling prosthetic hand applications. For this application, an analog front-end ASIC is designed using 0.35-µm standard process technology with ±1.65 V power supplies. It comprises a current driver capable of differential drive and a low noise (9μVrms) IA with a CMRR of 80 dB. The function modules occupy an area of 0.07 mm². Using the ASIC, a complete HMI system based on the EIT principle for hand prosthesis control has been presented, and the user’s forearm inner bio-impedance redistribution is assessed. Using artificial neural networks, bio-impedance redistribution can be learned so as to recognise the user’s intention in real-time for prosthesis operation. In this work, eleven hand motions are designed for prosthesis operation. Experiments with five subjects show that the system can achieve an overall recognition accuracy of 95.8%

    Design and characterization of the measurement electronics for a magnetic induction tomography imaging system

    Get PDF
    Includes abstract.Includes bibliographical references (p. 103-110).A data acquisition transceiver circuit for magnetic induction tomography (MIT) has been developed. MIT is a type of tomography technique that is sensitive to the conductivity of objects, and which can be used in both industrial and biomedical applications. A detailed design process of the MIT transceiver board and the coupling sensor coils are presented in this dissertation. For the purpose of testing the designed hardware, a three channel MIT measuring system was assembled, and various experiments were run on the system. Several different samples with high conductivity (metal sheets) or low conductivity (saline solution) were used to test the performance of the designed transceiver. Its suitability for being applied to the actual MIT system could then be assessed. The noise characteristics and stability of the system were also characterised. A complete eight channel MIT measurement system is presently being assembled based on the prototypes presented in the dissertation. The results obtained from the experiments are very promising. The construction of the multi-channel MIT system and the image reconstruction can confidently be expected in future development

    Electrical Impedance Tomography: From the Traditional Design to the Novel Frontier of Wearables

    Get PDF
    Electrical impedance tomography (EIT) is a medical imaging technique based on the injection of a current or voltage pattern through electrodes on the skin of the patient, and on the reconstruction of the internal conductivity distribution from the voltages collected by the electrodes. Compared to other imaging techniques, EIT shows significant advantages: it does not use ionizing radiation, is non-invasive and is characterized by high temporal resolution. Moreover, its low cost and high portability make it suitable for real-time, bedside monitoring. However, EIT is also characterized by some technical limitations that cause poor spatial resolution. The possibility to design wearable devices based on EIT has recently given a boost to this technology. In this paper we reviewed EIT physical principles, hardware design and major clinical applications, from the classical to a wearable setup. A wireless and wearable EIT system seems a promising frontier of this technology, as it can both facilitate making clinical measurements and open novel scenarios to EIT systems, such as home monitoring

    An electronic system for wear-debris condition monitoring.

    Get PDF
    • …
    corecore