62 research outputs found

    Noncircularity exploitation in signal processing overview and application to radar

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    Noncircular Waveforms Exploitation for Radar Signal Processing : Survey and Study for Agile Radar Waveform

    Get PDF
    International audienceWith new generation of Active Digital Radar Antenna, there is a renewal of waveform generation and processing approaches, and new strategies can be explored to optimize waveform design and waveform analysis and to benefit of all potential waveform diversity. Among these strategies, building and exploitation of the Noncircularity of waveforms is a promising issue. Up to the middle of the nineties, most of the signals encountered in practice are assumed to be second order (SO) circular (or proper), with a zero second correlation function. However, in numerous operational contexts such as in radio communications, the observed signals are either SO noncircular (or improper) or jointly SO noncircular with a particular signal to estimate, to detect or to demodulate, with some information contained in the second correlation function of the signals. Exploitation of this information in the processing of SO noncircular signals may generate dramatic gain in performance with respect to conventional processing and opens new perspective in signal processing. The purpose of this paper is to present a short overview of the interest of taking into account the potential SO noncircularity of the signals in signal processing and to describe the potential interest of SO noncircular waveforms for radar applications

    Integrated Sensing and Communication Signals Toward 5G-A and 6G: A Survey

    Full text link
    Integrated sensing and communication (ISAC) has the advantages of efficient spectrum utilization and low hardware cost. It is promising to be implemented in the fifth-generation-advanced (5G-A) and sixth-generation (6G) mobile communication systems, having the potential to be applied in intelligent applications requiring both communication and high-accurate sensing capabilities. As the fundamental technology of ISAC, ISAC signal directly impacts the performance of sensing and communication. This article systematically reviews the literature on ISAC signals from the perspective of mobile communication systems, including ISAC signal design, ISAC signal processing algorithms and ISAC signal optimization. We first review the ISAC signal design based on 5G, 5G-A and 6G mobile communication systems. Then, radar signal processing methods are reviewed for ISAC signals, mainly including the channel information matrix method, spectrum lines estimator method and super resolution method. In terms of signal optimization, we summarize peak-to-average power ratio (PAPR) optimization, interference management, and adaptive signal optimization for ISAC signals. This article may provide the guidelines for the research of ISAC signals in 5G-A and 6G mobile communication systems.Comment: 25 pages, 13 figures, 8 tables. IEEE Internet of Things Journal, 202

    A Reliable Multiple Access Scheme Based on Chirp Spread Spectrum and Turbo Codes

    Get PDF
    Nowadays, smart devices are the indispensable part of everyone's life and they play an important role in the advancement of industries and businesses.These devices are able to communicate with themselves and build the super network of the Internet of Things(IoT). Therefore, the need for the underlying structure of wireless data communications gains momentum. We require a wireless communication to support massive connectivity with ultra-fast data transmission rate and ultra-low latency. This research explores two possible methods of tackling the issues of the current communication systems for getting closer to the realization of the IoT. First, a grant-free scheme for uplink communication is proposed. The idea is to the combine the control signals with data signals by superimposing them on top of each other with minimal degradation of both signals. Moreover, it is well-established that orthogonal multiple access schemes cannot support the massive connectivity. Ergo, the second part of this research investigates a Non-Orthogonal Multiple Access(NOMA) scheme that exploits the powerful notion of turbo codes for separating the signals in a slow fading channel. It has been shown that in spite of the simplicity of the design, it has the potentials to surpass the performance of Sparse Code Multiple Access(SCMA) scheme

    Simultaneous operation of two over-the-horizon radars

    Full text link
    Abstract—By exploiting the reflective and refractive nature of high-frequency (HF) radiowave propagation through the iono-sphere or the conducting sea surface, over-the-horizon radar (OTHR) systems perform wide-area surveillance at long range well beyond the limit of the horizon of conventional line-of-sight (LOS) radars. Improved characterizations of the targets can be achieved by using multiple OTHRs operating simultaneously as compared to a single OTHR operating alone. In this paper, we consider concurrent operations of two OTHR systems that occupy the same frequency band with different chirp waveforms. The objective is to respond to the advanced wide-area surveillance needs without reducing the wave repetitive frequency. For this purpose, a new cross-radar interference cancellation technique is developed and its effectiveness is verified through both analytical and simulation results. I

    Application-Based Coexistence of Different Waveforms on Non-orthogonal Multiple Access

    Get PDF
    The coexistence of different wireless communication systems such as LTE and Wi-Fi by sharing the unlicensed band is well studied in the literature. In these studies, various methods are proposed to support the coexistence of systems, including listen-before-talk mechanism, joint user association and resource allocation. However, in this study, the coexistence of different waveform structures in the same resource elements are studied under the theory of non-orthogonal multiple access. This study introduces a paradigm-shift on NOMA towards the application-centric waveform coexistence. Throughout the paper, the coexistence of different waveforms is explained with two specific use cases, which are power-balanced NOMA and joint radar-sensing and communication with NOMA. In addition, some of the previous works in the literature regarding non-orthogonal waveform coexistence are reviewed. However, the concept is not limited to these use cases. With the rapid development of wireless technology, next-generation wireless systems are proposed to be flexible and hybrid, having different kinds of capabilities such as sensing, security, intelligence, control, and computing. Therefore, the concept of different waveforms' coexistence to meet these concerns are becoming impressive for researchers.Comment: Submitted to IEEE for possible publication. arXiv admin note: text overlap with arXiv:2007.05753, arXiv:2003.0554

    Multicodes for improved range resolution in radar

    Get PDF
    Third generation (3G) wireless systems are required to support a variety of communication services like voice, image, motion picture transmission, etc, each of which requires different transmission rates. Multi-code modulation has been introduced therefore as a means of supporting multi-rate services and operating in multi-cell environments [8, 9, 10]. This multi-rate multi-function capability may be used in Radar related applications, too. For example, a single transmitted waveform consisting of two orthogonal codes can be used to simultaneously track a target and obtain high range resolution. Tracking requires low bandwidth and high resolution needs a high bandwidth signal. Orthogonal codes like Walsh codes can be used to provide multiple rates if the codes are chosen from the same matrix, because certain Walsh codes of the same length have very different bandwidths. Therefore, as an extension to its use in communication, multi-codes can be used to enable multi-function operations in a Radar system. The first criterion for choosing a Radar waveform, whether single or multi-code, is its resolving capability in range and Doppler. A measure of range resolution or sensitivity to delay commonly used in Radar literature is the Peak to Sidelobe Level Ratio (PSLR) of the code\u27s autocorrelation function. The multi-codes proposed in this work are found to have better (lower) PSLRs than existing radar codes when the number of simultaneously transmitted codes is large. In the special case of using an entire set of orthogonal codes of any length, the resulting multi-code consists of just a single pulse of thickness equal to the chip width of the code used. This pulse will have a \u27perfect\u27 autocorrelation function with only a single peak at the main lobe and zero sidelobes. This gives the ideal PSLR for radar purposes. An important aspect of using multi-codes in Radar is the need for multiple transmitters to avoid the high peak factor that would result if only a single antenna 15 used. This requires the Radar system to have multiple transmitters as in phased array radar. The best example is a multi-function digital array radar that transmits a unique orthogonal code from each of its antenna elements as described by Rabideau and Parker in [13]. The system described in this publication makes use of the array mode of operation of the Radar to transmit orthogonal codes from each antenna element which are then phased and combined at the receiver. The phase (or angle) of the signal at each receive antenna element can be used to better resolve targets that are spatially separated. This thesis introduces the concept of multicodes in Radar. Further, the advantages of using multiple coded waveforms over the known Radar polyphase codes are demonstrated by simulations
    corecore