254 research outputs found

    Bounded Distributed Flocking Control of Nonholonomic Mobile Robots

    Full text link
    There have been numerous studies on the problem of flocking control for multiagent systems whose simplified models are presented in terms of point-mass elements. Meanwhile, full dynamic models pose some challenging problems in addressing the flocking control problem of mobile robots due to their nonholonomic dynamic properties. Taking practical constraints into consideration, we propose a novel approach to distributed flocking control of nonholonomic mobile robots by bounded feedback. The flocking control objectives consist of velocity consensus, collision avoidance, and cohesion maintenance among mobile robots. A flocking control protocol which is based on the information of neighbor mobile robots is constructed. The theoretical analysis is conducted with the help of a Lyapunov-like function and graph theory. Simulation results are shown to demonstrate the efficacy of the proposed distributed flocking control scheme

    Multi-objective Compositions for Collision-Free Connectivity Maintenance in Teams of Mobile Robots

    Get PDF
    Compositional barrier functions are proposed in this paper to systematically compose multiple objectives for teams of mobile robots. The objectives are first encoded as barrier functions, and then composed using AND and OR logical operators. The advantage of this approach is that compositional barrier functions can provably guarantee the simultaneous satisfaction of all composed objectives. The compositional barrier functions are applied to the example of ensuring collision avoidance and static/dynamical graph connectivity of teams of mobile robots. The resulting composite safety and connectivity barrier certificates are verified experimentally on a team of four mobile robots.Comment: To appear in 55th IEEE Conference on Decision and Control, December 12-14, 2016, Las Vegas, NV, US

    Decentralized Multi-Subgroup Formation Control With Connectivity Preservation and Collision Avoidance

    Get PDF
    This paper proposes a formation control algorithm to create separated multiple formations for an undirected networked multi-agent system while preserving the network connectivity and avoiding collision among agents. Through the modified multi-consensus technique, the proposed algorithm can simultaneously divide a group of multiple agents into any arbitrary number of desired formations in a decentralized manner. Furthermore, the agents assigned to each formation group can be easily reallocated to other formation groups without network topological constraints as long as the entire network is initially connected; an operator can freely partition agents even if there is no spanning tree within each subgroup. Besides, the system can avoid collision without loosing the connectivity even during the transient period of formation by applying the existing potential function based on the network connectivity estimation. If the estimation is correct, the potential function not only guarantees the connectivity maintenance but also allows some extra edges to be broken if the network remains connected. Numerical simulations are performed to verify the feasibility and performance of the proposed multi-subgroup formation control

    Stability and Vulnerability of Bird Flocking Behaviour: A Mathematical Analysis

    Get PDF
    Given a large number of birds in the flock, we mathematically investigate the mechanism the birds move in a collective behavior. We assume that each bird is able to know its position and velocity of other birds within a radius of communication. Thus, to be able to fly in the flock, a bird has to adjust its position and velocity according to his neighbors. For this purpose, first of all, we analyze how the connectedness of the bird interaction network affects the cohesion of the stable bird flock. We further analyze a condition when the flock is vulnerable, which is mathematically indicated by means of the presence of an articulation point in bird communication network

    Finite-time Motion Planning of Multi-agent Systems with Collision Avoidance

    Full text link
    Finite-time motion planning with collision avoidance is a challenging issue in multi-agent systems. This paper proposes a novel distributed controller based on a new Lyapunov barrier function which guarantees finite-time stability for multi-agent systems without collisions. First, the problem of finite-time motion planning of multi-agent systems is formulated. Then, a novel finite-time distributed controller is developed based on a Lyapunov barrier function. Finally, numerical simulations demonstrate the effectiveness of proposed method

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    Flexible Distributed Flocking Control for Multi-agent Unicycle Systems

    Full text link
    Currently, the general aim of flocking and formation control laws for multi-agent systems is to form and maintain a rigid configuration, such as, the alpha-lattices in flocking control methods, where the desired distance between each pair of connected agents is fixed. This introduces a scalability issue for large-scale deployment of agents due to unrealizable geometrical constraints and the constant need of centralized orchestrator to ensure the formation graph rigidity. This paper presents a flexible distributed flocking cohesion algorithm for nonholonomic multi-agent systems. The desired geometry configuration between each pair of agents is adaptive and flexible. The distributed flocking goal is achieved using limited information exchange (i.e., the local field gradient) between connected neighbor agents and it does not rely on any other motion variables measurements, such as (relative) position, velocity, or acceleration. Additionally, the flexible flocking scheme with safety is considered so that the agents with limited sensing capability are able to maintain the connectedness of communication topology at all time and avoid inter-agent collisions. The stability analysis of the proposed methods is presented along with numerical simulation results to show their effectiveness.Comment: 9 pages, 2 figure
    corecore