6 research outputs found

    Privacy-Utility Management of Hypothesis Tests

    Full text link
    The trade-off of hypothesis tests on the correlated privacy hypothesis and utility hypothesis is studied. The error exponent of the Bayesian composite hypothesis test on the privacy or utility hypothesis can be characterized by the corresponding minimal Chernoff information rate. An optimal management protects the privacy by minimizing the error exponent of the privacy hypothesis test and meanwhile guarantees the utility hypothesis testing performance by satisfying a lower bound on the corresponding minimal Chernoff information rate. The asymptotic minimum error exponent of the privacy hypothesis test is shown to be characterized by the infimum of corresponding minimal Chernoff information rates subject to the utility guarantees.Comment: accepted in IEEE Information Theory Workshop 201

    On the Design and Analysis of Secure Inference Networks

    Get PDF
    Parallel-topology inference networks consist of spatially-distributed sensing agents that collect and transmit observations to a central node called the fusion center (FC), so that a global inference is made regarding the phenomenon-of-interest (PoI). In this dissertation, we address two types of statistical inference, namely binary-hypothesis testing and scalar parameter estimation in parallel-topology inference networks. We address three different types of security threats in parallel-topology inference networks, namely Eavesdropping (Data-Confidentiality), Byzantine (Data-Integrity) or Jamming (Data-Availability) attacks. In an attempt to alleviate information leakage to the eavesdropper, we present optimal/near-optimal binary quantizers under two different frameworks, namely differential secrecy where the difference in performances between the FC and Eve is maximized, and constrained secrecy where FC’s performance is maximized in the presence of tolerable secrecy constraints. We also propose near-optimal transmit diversity mechanisms at the sensing agents in detection networks in the presence of tolerable secrecy constraints. In the context of distributed inference networks with M-ary quantized sensing data, we propose a novel Byzantine attack model and find optimal attack strategies that minimize KL Divergence at the FC in the presence of both ideal and non-ideal channels. Furthermore, we also propose a novel deviation-based reputation scheme to detect Byzantine nodes in a distributed inference network. Finally, we investigate optimal jamming attacks in detection networks where the jammer distributes its power across the sensing and the communication channels. We also model the interaction between the jammer and a centralized detection network as a complete information zero-sum game. We find closed-form expressions for pure-strategy Nash equilibria and show that both the players converge to these equilibria in a repeated game. Finally, we show that the jammer finds no incentive to employ pure-strategy equilibria, and causes greater impact on the network performance by employing mixed strategies

    Design of Binary Quantizers for Distributed Detection under Secrecy Constraints

    No full text
    In this paper, we investigate the design of distributed detection networks in the presence of an eavesdropper (Eve). We consider the problem of designing binary sensor quantizers that maximize the Kullback-Leibler (KL) divergence at the fusion center (FC), when subject to a tolerable constraint on the KL divergence at Eve. We assume that the channels between the sensors and the FC (likewise the channels between the sensors and the Eve) are modeled as binary symmetric channels (BSCs). In the case of i.i.d. received symbols at both the FC and Eve, we prove that the structure of the optimal binary quantizers is a likelihood ratio test (LRT). We also present an algorithm to find the threshold of the optimal LRT, and illustrate it for the case of Additive white Gaussian noise (AWGN) observation models at the sensors. In the case of non-i.i.d. received symbols at both FC and Eve, we propose a dynamic-programming based algorithm to find efficient quantizers at the sensors. Numerical results are presented to illustrate the performance of the proposed network

    Design of Binary Quantizers for Distributed Detection Under Secrecy Constraints

    No full text
    corecore