3,829 research outputs found

    Mechatronic design of the Twente humanoid head

    Get PDF
    This paper describes the mechatronic design of the Twente humanoid head, which has been realized in the purpose of having a research platform for human-machine interaction. The design features a fast, four degree of freedom neck, with long range of motion, and a vision system with three degrees of freedom, mimicking the eyes. To achieve fast target tracking, two degrees of freedom in the neck are combined in a differential drive, resulting in a low moving mass and the possibility to use powerful actuators. The performance of the neck has been optimized by minimizing backlash in the mechanisms, and using gravity compensation. The vision system is based on a saliency algorithm that uses the camera images to determine where the humanoid head should look at, i.e. the focus of attention computed according to biological studies. The motion control algorithm receives, as input, the output of the vision algorithm and controls the humanoid head to focus on and follow the target point. The control architecture exploits the redundancy of the system to show human-like motions while looking at a target. The head has a translucent plastic cover, onto which an internal LED system projects the mouth and the eyebrows, realizing human-like facial expressions

    The Twente humanoid head

    Get PDF
    This video shows the results of the project on the mechatronic development of the Twente humanoid head. The mechanical structure consists of a neck with four degrees of freedom (DOFs) and two eyes (a stereo pair system) which tilt on a common axis and rotate sideways freely providing a three more DOFs. The motion control algorithm is designed to receive, as an input, the output of a biological-inspired vision processing algorithm and to exploit the redundancy of the joints for the realization of the movements. The expressions of the humanoid head are implemented by projecting light from the internal part of the translucent plastic cover

    Trajectory generation with natural ZMP references for the biped walking robot SURALP

    Get PDF
    Bipedal locomotion has good obstacle avoidance properties. A robot with human appearance has advantages in human-robot communication. However, walking control is difficult due to the complex robot dynamics involved. Stable reference generation is significant in walking control. The Linear Inverted Pendulum Model (LIPM) and the Zero Moment Point (ZMP) criterion are applied in a number of studies for stable walking reference generation of biped robots. This is the main route of reference generation in this paper too. We employ a natural and continuous ZMP reference trajectory for a stable and human-like walk. The ZMP reference trajectories move forward under the sole of the support foot when the robot body is supported by a single leg. Robot center of mass (CoM) trajectory is obtained from predefined ZMP reference trajectories by Fourier series approximation. We reported simulation results with this algorithm in our previous works. This paper presents the first experimental results. Also the use of a ground push phase before foot take-offs reported in our previous works is tested first time together with our ZMP based reference trajectory. The reference generation strategy is tested via walking experiments on the 29 degrees-of-freedom (DOF) human sized full body humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Experiments indicate that the proposed reference trajectory generation technique is successful

    Vision based motion control for a humanoid head

    Get PDF
    This paper describes the design of a motion control algorithm for a humanoid robotic head, which consists of a neck with four degrees of freedom and two eyes (a stereo pair system) that tilt on a common axis and rotate sideways freely. The kinematic and dynamic properties of the head are analyzed and modeled using screw theory. The motion control algorithm is designed to receive, as an input, the output of a vision processing algorithm and to exploit the redundancy of the system for the realization of the movements. This algorithm is designed to enable the head to focus on and to follow a target, showing human-like motions. The performance of the control algorithm has been tested in a simulated environment and, then, experimentally applied to the real humanoid head

    Synthesized cooperative strategies for intelligent multi-robots in a real-time distributed environment : a thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    In the robot soccer domain, real-time response usually curtails the development of more complex Al-based game strategies, path-planning and team cooperation between intelligent agents. In light of this problem, distributing computationally intensive algorithms between several machines to control, coordinate and dynamically assign roles to a team of robots, and allowing them to communicate via a network gives rise to real-time cooperation in a multi-robotic team. This research presents a myriad of algorithms tested on a distributed system platform that allows for cooperating multi- agents in a dynamic environment. The test bed is an extension of a popular robot simulation system in the public domain developed at Carnegie Mellon University, known as TeamBots. A low-level real-time network game protocol using TCP/IP and UDP were incorporated to allow for a conglomeration of multi-agent to communicate and work cohesively as a team. Intelligent agents were defined to take on roles such as game coach agent, vision agent, and soccer player agents. Further, team cooperation is demonstrated by integrating a real-time fuzzy logic-based ball-passing algorithm and a fuzzy logic algorithm for path planning. Keywords Artificial Intelligence, Ball Passing, the coaching system, Collaborative, Distributed Multi-Agent, Fuzzy Logic, Role Assignmen

    Systems overview of Ono: a DIY reproducible open source social robot

    Get PDF
    One of the major obstacles in the study of HRI (human-robot interaction) with social robots is the lack of multiple identical robots that allow testing with large user groups. Often, the price of these robots prohibits using more than a handful. A lot of the commercial robots do not possess all the necessary features to perform specific HRI experiments and due to the closed nature of the platform, large modifications are nearly impossible. While open source social robots do exist, they often use high-end components and expensive manufacturing techniques, making them unsuitable for easy reproduction. To address this problem, a new social robotics platform, named Ono, was developed. The design is based on the DIY mindset of the maker movement, using off-the-shelf components and more accessible rapid prototyping and manufacturing techniques. The modular structure of the robot makes it easy to adapt to the needs of the experiment and by embracing the open source mentality, the robot can be easily reproduced or further developed by a community of users. The low cost, open nature and DIY friendliness of the robot make it an ideal candidate for HRI studies that require a large user group
    • 

    corecore