120 research outputs found

    Non-coherent Massive SIMO Systems in ISI Channels: Constellation Design and Performance Analysis

    Full text link
    A massive single-input multiple-output (SIMO) system with a single transmit antenna and a large number of receive antennas in intersymbol interference (ISI) channels is considered. Contrast to existing energy detection (ED)-based non-coherent receiver where conventional pulse amplitude modulation (PAM) is employed, we propose a constellation design which minimizes the symbol-error rate (SER) with the knowledge of channel statistics. To make a comparison, we derive the SERs of the ED-based receiver with both the proposed constellation and PAM, namely Pe_optP_{e\_opt} and Pe_pamP_{e\_pam}. Specifically, asymptotic behaviors of the SER in regimes of a large number of receive antennas and high signal-to-noise ratio (SNR) are investigated. Analytical results demonstrate that the logarithms of both Pe_optP_{e\_opt} and Pe_pamP_{e\_pam} decrease approximately linearly with the number of receive antennas, while Pe_optP_{e\_opt} degrades faster. It is also shown that the proposed design is of less cost, because compared with PAM, less antennas are required to achieve the same error rate

    Performance Analysis of Energy-Detection-Based Massive SIMO

    Full text link
    Recently, communications systems that are both energy efficient and reliable are under investigation. In this paper, we concentrate on an energy-detection-based transmission scheme where a communication scenario between a transmitter with one antenna and a receiver with significantly many antennas is considered. We assume that the receiver initially calculates the average energy across all antennas, and then decodes the transmitted data by exploiting the average energy level. Then, we calculate the average symbol error probability by means of a maximum a-posteriori probability detector at the receiver. Following that, we provide the optimal decision regions. Furthermore, we develop an iterative algorithm that reaches the optimal constellation diagram under a given average transmit power constraint. Through numerical analysis, we explore the system performance

    Design and Performance Analysis of Non-Coherent Detection Systems with Massive Receiver Arrays

    Full text link
    Harvesting the gain of a large number of antennas in a mmWave band has mainly been relying on the costly operation of channel state information (CSI) acquisition and cumbersome phase shifters. Recent works have started to investigate the possibility to use receivers based on energy detection (ED), where a single data stream is decoded based on the channel and noise energy. The asymptotic features of the massive receiver array lead to a system where the impact of the noise becomes predictable due to a noise hardening effect. This in effect extends the communication range compared to the receiver with a small number of antennas, as the latter is limited by the unpredictability of the additive noise. When the channel has a large number of spatial degrees of freedom, the system becomes robust to imperfect channel knowledge due to channel hardening. We propose two detection methods based on the instantaneous and average channel energy, respectively. Meanwhile, we design the detection thresholds based on the asymptotic properties of the received energy. Differently from existing works, we analyze the scaling law behavior of the symbol-error-rate (SER). When the instantaneous channel energy is known, the performance of ED approaches that of the coherent detection in high SNR scenarios. When the receiver relies on the average channel energy, our performance analysis is based on the exact SER, rather than an approximation. It is shown that the logarithm of SER decreases linearly as a function of the number of antennas. Additionally, a saturation appears at high SNR for PAM constellations of order larger than two, due to the uncertainty on the channel energy. Simulation results show that ED, with a much lower complexity, achieves promising performance both in Rayleigh fading channels and in sparse channels

    Capacity of SIMO and MISO Phase-Noise Channels with Common/Separate Oscillators

    Full text link
    In multiple antenna systems, phase noise due to instabilities of the radio-frequency (RF) oscillators, acts differently depending on whether the RF circuitries connected to each antenna are driven by separate (independent) local oscillators (SLO) or by a common local oscillator (CLO). In this paper, we investigate the high-SNR capacity of single-input multiple-output (SIMO) and multiple-output single-input (MISO) phase-noise channels for both the CLO and the SLO configurations. Our results show that the first-order term in the high-SNR capacity expansion is the same for all scenarios (SIMO/MISO and SLO/CLO), and equal to 0.5ln(ρ)0.5\ln (\rho), where ρ\rho stands for the SNR. On the contrary, the second-order term, which we refer to as phase-noise number, turns out to be scenario-dependent. For the SIMO case, the SLO configuration provides a diversity gain, resulting in a larger phase-noise number than for the CLO configuration. For the case of Wiener phase noise, a diversity gain of at least 0.5ln(M)0.5 \ln(M) can be achieved, where MM is the number of receive antennas. For the MISO, the CLO configuration yields a higher phase-noise number than the SLO configuration. This is because with the CLO configuration one can obtain a coherent-combining gain through maximum ratio transmission (a.k.a. conjugate beamforming). This gain is unattainable with the SLO configuration.Comment: IEEE Transactions on Communication

    Deep Energy Autoencoder for Noncoherent Multicarrier MU-SIMO Systems

    Get PDF
    We propose a novel deep energy autoencoder (EA) for noncoherent multicarrier multiuser single-input multipleoutput (MU-SIMO) systems under fading channels. In particular, a single-user noncoherent EA-based (NC-EA) system, based on the multicarrier SIMO framework, is first proposed, where both the transmitter and receiver are represented by deep neural networks (DNNs), known as the encoder and decoder of an EA. Unlike existing systems, the decoder of the NC-EA is fed only with the energy combined from all receive antennas, while its encoder outputs a real-valued vector whose elements stand for the subcarrier power levels. Using the NC-EA, we then develop two novel DNN structures for both uplink and downlink NC-EA multiple access (NC-EAMA) schemes, based on the multicarrier MUSIMO framework. Note that NC-EAMA allows multiple users to share the same sub-carriers, thus enables to achieve higher performance gains than noncoherent orthogonal counterparts. By properly training, the proposed NC-EA and NC-EAMA can efficiently recover the transmitted data without any channel state information estimation. Simulation results clearly show the superiority of our schemes in terms of reliability, flexibility and complexity over baseline schemes.Comment: Accepted, IEEE TW
    corecore