3 research outputs found

    Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots

    Full text link
    Our paper proposes a model predictive controller as a single-task formulation that simultaneously optimizes wheel and torso motions. This online joint velocity and ground reaction force optimization integrates a kinodynamic model of a wheeled quadrupedal robot. It defines the single rigid body dynamics along with the robot's kinematics while treating the wheels as moving ground contacts. With this approach, we can accurately capture the robot's rolling constraint and dynamics, enabling automatic discovery of hybrid maneuvers without needless motion heuristics. The formulation's generality through the simultaneous optimization over the robot's whole-body variables allows for a single set of parameters and makes online gait sequence adaptation possible. Aperiodic gait sequences are automatically found through kinematic leg utilities without the need for predefined contact and lift-off timings, reducing the cost of transport by up to 85%. Our experiments demonstrate dynamic motions on a quadrupedal robot with non-steerable wheels in challenging indoor and outdoor environments. The paper's findings contribute to evaluating a decomposed, i.e., sequential optimization of wheel and torso motion, and single-task motion planner with a novel quantity, the prediction error, which describes how well a receding horizon planner can predict the robot's future state. To this end, we report an improvement of up to 71% using our proposed single-task approach, making fast locomotion feasible and revealing wheeled-legged robots' full potential.Comment: 8 pages, 6 figures, 1 table, 52 references, 9 equation

    Suspension effect in tip-over stability and steerability of robots moving on terrain discontinuities

    Full text link
    [ES] En este artículo se estudia el efecto que produce el sistema de suspensión sobre la estabilidad al vuelco y la capacidad de direccionamiento en un robot móvil Skid Steer, cuando este se enfrenta a distintas discontinuidades del terreno: descenso (frontal y lateral) y ascenso sobre escalones, además del desplazamiento sobre zanjas. Específicamente, se estudió el instante cuando se generan cargas de impacto producto del movimiento del robot sobre la irregularidad del terreno. En cada caso se hizo un análisis correlacional del efecto sobre la estabilidad al vuelco y el direccionamiento (cuantificadas con métricas fundamentadas en las fuerzas de reacción de las ruedas con el suelo), al variar cuatro parámetros que definen el sistema de suspensión: constante de rigidez en los resortes, constante de amortiguamiento en los amortiguadores y las constantes de rigidez y amortiguamiento en las ruedas. Por último se estimó para cada caso, qué magnitudes deberían adquirir estos parámetros para garantizar una mejor estabilidad y direccionamiento del robot.[EN] This article studies the effect produced by the suspension system in tip-over stability and steerability of a Skid Steer mobile robot, when it faces different terrain discontinuities: descent (front and side) and ascent on steps, plus displacement over ditches. Specifically, the moment was studied when impact loads producted by the robot's movement on the irregularity of the terrain are generated. In each case, a correlational analysis was made about the effect in tip-over stability and steerability (quantified with metrics based on the reaction forces of the wheels with the ground), by varying four parameters that define the suspension system: stiffness constant in the springs, damping constant in the dampers and the stiffness and damping constants in the wheels. Finally, it was estimated for each case, what magnitudes these parameters should acquire to ensure better stability and steerability of robot.Este trabajo ha sido realizado parcialmente gracias al apoyo del Decanato de Investigación de la Universidad Nacional Experimental del Táchira bajo los proyectos 01-025-2016 y 01-008-2018.García, JM.; Valero, A.; Bohórquez, A. (2020). Efecto de la suspensión en la estabilidad al vuelco y direccionamiento de robots moviéndose sobre discontinuidades de terreno. Revista Iberoamericana de Automática e Informática industrial. 17(2):202-214. https://doi.org/10.4995/riai.2020.12308OJS202214172Abo-Shanab, R., & Sepehri, N., 2005. Tip-over stability of manipulator-like mobile hydraulic machines. Journal of Dynamic Systems, Measurement and Control , 127 (2), 295-301. https://doi.org/10.1115/1.1898239Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., y otros., 2010. An active suspension system for lunar crew mobility. IEEE Aerospace Conference, (págs. 1-9). Big Sky. https://doi.org/10.1109/AERO.2010.5446895Bruzzone, L., Fanghella, P., & Quaglia, G., 2017. Experimental performance assessment of mantis 2, hybrid leg-wheel mobile robot. International Journal of Automation Technology , 11 (3), 396-403. https://doi.org/10.20965/ijat.2017.p0396Chen, S., Li, X., Zhou, J., Wu, W., Yuan, S., & Liu, S., 2017. Modelling the vertical dynamics of unmanned ground vehicle with rocker suspension. Proceedings of IEEE International Conference on Mechatronics and Automation, (págs. 370-375). Takamatsu. https://doi.org/10.1109/ICMA.2017.8015845Chokor, A., Talj, R., Charara, A., Shraim, H., & Francis, C., 2016. Active suspension control to improve passengers comfort and vehicle's stability. IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), (págs. 296-301). Rio de Janeiro. https://doi.org/10.1109/ITSC.2016.7795570Cordes, F., Kirchner, F., & Babu, A., 2018. Design and field testing of a rover with an actively articulated suspension system in a Mars analog terrain. Journal of Field Robotics , 35 (7), 1149-1181. https://doi.org/10.1002/rob.21808Cordos, N., & Todorut, A., 2019. Influences of the suspensions characteristics on the vehicle stability. En N. Burnete, & B. Varga (Ed.), Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018) (págs. 808-813). Cham: Springer. https://doi.org/10.1007/978-3-319-94409-8_94Deremetz, M., Lenain, R., & Thuilot, B., 2017. tiffness and damping real-time control algorithms for adjustable suspensions : A strategy to reduce dynamical effects on vehicles in off-road conditions. IFAC-PapersOnLine , 50 (1), 1958-1964. https://doi.org/10.1016/j.ifacol.2017.08.1565Ellery, A., 2016. Rover mobility and locomotion. En Planetary Rovers, Springer Praxis Books (págs. 71-132). Berlin: Springer, Heidelberg. https://doi.org/10.1007/978-3-642-03259-2_4Funde, J., Wani, K., Dhote, N., & Patil, S., 2019. Performance analysis of semi-active suspension system based on suspension working space and dynamic tire deflection. En U. Chandrasekhar, L. Yang, & S. Gowthaman (Ed.). (págs. 1-15). Singapure: Springer. https://doi.org/10.1007/978-981-13-2697-4_1García, J. M., Gil, A., & Sánchez, E. (2018). Desarrollo de una arquitectura de software para el robot móvil Lázaro. Ingeniare , 26 (3), 376-390. https://doi.org/10.4067/S0718-33052018000300376García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2017b. Caster-leg aided maneuver for negotiating surface discontinuities with a wheeled skid-steer mobile robot. Robotics and Autonomous Systems , 91, 25-37. https://doi.org/10.1016/j.robot.2016.12.007García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2015b. Steerability analysis on slopes of a mobile robot with a ground contact arm. Proc. 23rd Mediterranean Conference on Control and Automation, (págs. 267-272). Torremolinos, Spain. https://doi.org/10.1109/MED.2015.7158761García, J. M., Medina, I., Cerezo, A. G., & Linares, A., 2015a. Improving the static stability of a mobile manipulator using its end effector in contact with the ground. IEEE Latin American Transactions , 13 (10), 3228-3234. https://doi.org/10.1109/TLA.2015.7387226García, J., Medina, I., Martínez, J., García-Cerezo, A., Linares, A., & Porras, C., 2017a. Lázaro: robot móvil dotado de brazo para contacto con el suelo. Revista Iberoamericana de Automática e Informática industrial , 14 (1), 174-183. https://doi.org/10.1016/j.riai.2016.09.012Goga, V., & Kl'úcik, M., 2012. Optimization of vehicle suspension parameters with use of evolutionary computation. Procedia Engineering , 48, 174-179. https://doi.org/10.1016/j.proeng.2012.09.502Hurel, J., Mandow, A., & García-Cerezo, A., 2013. Los sistemas de suspensión activa y semiactiva: una revisión. Revista iberoamericana de automática e informática , 10 (2), 121-132. https://doi.org/10.1016/j.riai.2013.03.002Kang, S., Lee, W., Kim, M., & Shin, K., 2005. Robhaz-rescue: Rough-terrain negotiable teleoperated mobile robot for rescue mission. IEEE International Workshop on Safety, Security and Rescue Robotics, (págs. 105-110). Kobe.Lei, X., Zhang, G., Li, S., Qian, H., & Xu, Y., 2017. Dual-spring AGV shock absorption system design: Dynamic analysis and simulations. IEEE International Conference on Robotics and Biomimetics (ROBIO), (págs. 1-7). Macau. https://doi.org/10.1109/ROBIO.2017.8324559Li, B., Ma, S., Liu, J., Wang, M., Liu, T., & Wang, Y., 2009. Amoeba-I: a shape-shifting modular robot for urban search and rescue. Advanced Robotics , 23 (9), 1057-1083. https://doi.org/10.1163/156855309X452485Liu, Y., Meng, X., & Zhang, M., 2008. Research on mobile manipulator tip-over stability and compensation. 8th WSEAS International Conference on Robotics, control and Manufacturing Technology, (págs. 114-120). Hangzhou.Luo, Z., Shang, J., Wei, G., & Ren, L., 2018. Module-based structure design of wheeled mobile robot. Mechanical Sciences , 9 (1), 103-121. https://doi.org/10.5194/ms-9-103-2018Mihon, L., & Lontiș, N., 2019. Modeling and analysis of a vehicle suspension. En N. Burnete, & B. Varga (Ed.), Proceedings of the 4th International Congress of Automotive and Transport Engineering (AMMA 2018), (págs. 113-121). https://doi.org/10.1007/978-3-319-94409-8_14Moosavian, A., Alipour, K., & Bahramzadeh, Y., 2007. Dynamics modeling and tip-over stability of suspended wheeled mobile robots with multiple arms. IEEE/RSJ International Conference on Intelligent Robots and Systems, (págs. 1210-1215). San Diego. https://doi.org/10.1109/IROS.2007.4398999Reid, W., Pérez-Grau, F., Göktogan, A., & Sukkarieh, S., 2016. Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface. IEEE International Conference on Robotics and Automation (ICRA), (págs. 5596-5602). Stockholm. https://doi.org/10.1109/ICRA.2016.7487777Sert, E., & Boyraz, P., 2017. Optimization of suspension system and sensitivity analysis for improvement of stability in a midsize heavy vehicle. Engineering Science and Technology, an International Journal , 20, 997-1012. https://doi.org/10.1016/j.jestch.2017.03.007Suresh, A., Ajithkumar, N., Kalathil, S., Simon, A., Unnikrishnan, V., Mathew, D., y otros., 2017. An advanced spider-like rocker-bogie suspension system for mars exploration rovers. En J. Kim, F. Karray, P. Sincak, & G. Myung (Ed.), Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing. 447, págs. 423-447. Springer. https://doi.org/10.1007/978-3-319-31293-4_34Yang, L., Cai, B., Zhang, R., Li, K., & Wang, R., 2018. A new type design of lunar rover suspension structure and its neural network control system. Journal of Intelligent & Fuzzy Systems , 35 (1), 269-281. https://doi.org/10.3233/JIFS-169586Zhang, J., Jia, X., Zhao, Z., & Gao, R., 2015. Optimization of Positioning Parameters for McPherson Front Suspension based on ADAMS/Car. International Conference on Computer Science and Mechanical Automation (CSMA), (págs. 297-301). Hangzhou. https://doi.org/10.1109/CSMA.2015.66Zhang, S., Zhao, X., Su, W., Wu, H., Dai, Z., & Chen, Z., 2019. The design of suspension mechanism and analysis of obstacle ability to rescue robots. En K. Deng, Z. Yu, S. Patnaik, & J. Wang (Ed.), Recent Developments in Mechatronics and Intelligent Robotics. ICMIR 2018. Advances in Intelligent Systems and Computing. 856, págs. 677-685. Cham: Springer. https://doi.org/10.1007/978-3-030-00214-5_8
    corecore