2,606 research outputs found

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure

    TCP-Aware Backpressure Routing and Scheduling

    Full text link
    In this work, we explore the performance of backpressure routing and scheduling for TCP flows over wireless networks. TCP and backpressure are not compatible due to a mismatch between the congestion control mechanism of TCP and the queue size based routing and scheduling of the backpressure framework. We propose a TCP-aware backpressure routing and scheduling that takes into account the behavior of TCP flows. TCP-aware backpressure (i) provides throughput optimality guarantees in the Lyapunov optimization framework, (ii) gracefully combines TCP and backpressure without making any changes to the TCP protocol, (iii) improves the throughput of TCP flows significantly, and (iv) provides fairness across competing TCP flows

    CMOS transceiver with baud rate clock recovery for optical interconnects

    Get PDF
    An efficient baud rate clock and data recovery architecture is applied to a double sampling/integrating front-end receiver for optical interconnects. Receiver performance is analyzed and projected for future technologies. This front-end allows use of a 1:5 demux architecture to achieve 5Gb/s in a 0.25 μm CMOS process. A 5:1 multiplexing transmitter is used to drive VCSELs for optical transmission. The transceiver chip consumes 145mW per link at 5Gb/s with a 2.5V supply

    An Analysis of the MOS under Conditions of Delay, Jitter and Packet Loss and an Analysis of the Impact of Introducing Piggybacking and Reed Solomon FEC for VOIP

    Get PDF
    Voice over IP (VoIP) is a real time application that allows transmitting voice through the Internet network. Recently there has been amazing progress in this field, mainly due to the development of voice codecs that react appropriately under conditions of packet loss, and the improvement of intelligent jitter buffers that perform better under conditions of variable inter packet delay. In addition, there are other factors that indirectly benefited VoIP. Today, computer networks are faster due to the advances in hardware and breakthrough algorithms. As a result, the quality of VoIP calls has improved considerably. However, the quality of VoIP calls under extreme conditions of packet loss still remains a major problem that needs to be addressed for the next generation of VoIP services. This thesis concentrates in making an analysis of the effects that network impairments, such as: delay, jitter, and packet loss have in the quality of VoIP calls and approaches to solve this problem. Finally, we analyze the impact of introducing forward error correction (FEC) Piggybacking and Reed Solomon codes for VoIP. To measure the mean opinion score of VoIP calls we develop an application based on the E-Model, and utilize perceptual evaluation of speech quality (PESQ)
    corecore