3,164 research outputs found

    Integrated Support for Handoff Management and Context-Awareness in Heterogeneous Wireless Networks

    Get PDF
    The overwhelming success of mobile devices and wireless communications is stressing the need for the development of mobility-aware services. Device mobility requires services adapting their behavior to sudden context changes and being aware of handoffs, which introduce unpredictable delays and intermittent discontinuities. Heterogeneity of wireless technologies (Wi-Fi, Bluetooth, 3G) complicates the situation, since a different treatment of context-awareness and handoffs is required for each solution. This paper presents a middleware architecture designed to ease mobility-aware service development. The architecture hides technology-specific mechanisms and offers a set of facilities for context awareness and handoff management. The architecture prototype works with Bluetooth and Wi-Fi, which today represent two of the most widespread wireless technologies. In addition, the paper discusses motivations and design details in the challenging context of mobile multimedia streaming applications

    Design and evaluation of dynamic policy-based flow redirection for multihomed mobile netwotks

    Get PDF
    This paper presents the design, implementation and evaluation of a solution for dynamic redirection of traffic flows for multihomed mobile networks. The solution was developed for a mobile user that disposes of a Personal Area Network (PAN) with a Personal Mobile Router (PMR), in order to achieve Always Best Connected(ABC) service by distributing flows belonging to different applications among the most appropriate access networks. Designed in a modular way for a NEMO based mobility and multihoming support, the proposed flow redirection solution can be easily coupled with and controlled by dynamic traffic policies that come from advanced network intelligence, according to the currently available network resources and user and application requirements. A prototype implementation was validated and assessed on a testbed as proof-of-concept

    NETQOS policy management architecture for flexible QOS provisioning in Future Internet

    Get PDF
    This paper is focussed on the NETQOS architecture for automated QoS policy provisioning, which can be used in Future Internet scenarios by the different actors (i.e. network operators, service providers, and users) for flexible QoS configuration over combinations of mobile, fixed, sensor and broadcast networks. The NETQOS policy management architecture opens the possibility to specify QoS policies on a "business" level using ontology descriptions and policy management interfaces, which are specific to the actors. The business level policy specifications are translated by the NETQOS system into intermediate and operational QoS policies for automated QoS configuration at the managed heterogeneous network and transport entities. NETQOS allows QoS policy specification and dependency analysis considering Service Level Agreements (SLAs) between the actors, as well as automated policy provisioning and adaptation. The interaction of the NETQOS components is based on a common po licy repository. The particular focus of the paper is aimed to discuss ontology and actor oriented QoS policy specification and configuration for heterogeneous networks, as well as NETQOS QoS policy management interfaces at business level and automated translation of business QoS policies to intermediate and operational policy level

    A cross-layer mobility management framework for next-generation wireless roaming

    Get PDF
    Word processed copy.Includes bibliographical references (leaves 62-64).This thesis proposes a mobility management framework that aims to provide a framework for advanced mobility algorithms that allows the challenges of next-generation roaming to be met. The framework features tools that gather context and content information, guarantee low-level QoS, provide security, and offer link and handoff management. The framework aims to be scalable and reliable for all-IP heterogeneous wireless networks whilst conforming to 4G service requirements

    A QoS Aware Vertical Handover In Mobile Network

    Get PDF
    The convergence of heterogeneous wireless access technologies characterizes the 4G wireless networks. In such converged systems, the seamless and efficient handoff between different access technologies (vertical handoff) is essential and remains a challenging problem. The heterogeneous co-existence of access technologies with largely different characteristics creates a decision problem of determining the “best” available network at “best” time to reduce the unnecessary handoffs. This project proposes a dynamic decision model to decide the “best” network at “best” time moment to handoffs. The proposed dynamic decision model make the right vertical handoff decisions by determining the “best” network at “best” time among available networks based on, dynamic factors such as “Received Signal Strength(RSS)” of network and SNR(Signal-to-Noise Ratio), Link capacity(offered bandwidth) and power consumption. This model not only meets the individual user needs but also improves the whole system performance by reducing the unnecessary handoffs
    • …
    corecore