789 research outputs found

    Design and calibration of a hall effect system for measurement of six-degree-of-freedom motion within a stacked column

    Get PDF
    This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required

    Automotive Inductive Position Sensor

    Get PDF
    Inductive angular position sensors (IAPS) are widely used for high accuracy and low cost angular position sensing in harsh automotive environments, such as suspension height sensor and throttle body position sensor. These sensors ensure high resolution and long lifetime due to their contactless sensing mode and their simple structure. Furthermore, they are suitable for wider application areas. For instance, they can be miniaturized to fit into a compact packaging space, or be adopted to measure the relative angle of multiple rotating targets for the purposes of torque sensing. In this work, a detailed SIMULINK model of an IAPS is first proposed in order to study and characterize the sensor performance. The model is validated by finite element analysis and circuit simulation, which provides a powerful design tool for sensor performance analysis. The sensor error introduced by geometry imperfection is thoroughly investigated for two-phase and three-phase configurations, and a corresponding correction method to improve the accuracy is proposed. A design optimization method based on the response surface methodology is also developed and used in the sensor development. Three types of sensors are developed to demonstrate the inductive sensor technology. The first type is the miniaturized inductive sensor. To compensate for the weak signal strength and the reduced quality (Q) factor due to the scaling down effect, a resonant rotor is developed for this type of sensor. This sensor is fabricated by using the electrodeposition technique. The prototype shows an 8mm diameter sensor can function well at 1.5mm air gap. The second type is a steering torque sensor, which is designed to detect the relative torsional angle of a rotating torsional shaft. It demonstrates the mutual coupling of multiple inductive sensors. By selecting a proper layout and compensation algorithm, the torque sensor can achieve 0.1 degree accuracy. The third type is a passive inductive sensor, which is designed to reduce power consumption and electromagnetic emissions. The realization and excellent performance of these three types of sensors have shown the robustness of the inductive sensor technology and its potential applications. The research conducted in this dissertation is expected to improve understanding of the performance analysis of IAPS and provide useful guidelines for the design and performance optimization of inductive sensors

    Letter of Intent:the NA60+ experiment

    Get PDF

    Letter of Intent:the NA60+ experiment

    Get PDF
    We propose a new fixed-target experiment for the study of electromagnetic and hard probes of the Quark-Gluon Plasma (QGP) in heavy-ion collisions at the CERN SPS. The experiment aims at performing measurements of the dimuon spectrum from threshold up to the charmonium region, and of hadronic decays of charm and strange hadrons. It is based on a muon spectrometer, which includes a toroidal magnet and six planes of tracking detectors, coupled to a vertex spectrometer, equipped with Si MAPS immersed in a dipole field. High luminosity is an essential requirement for the experiment, with the goal of taking data with 106 incident ions/s, at collision energies ranging from √sNN = 6.3 GeV (Elab = 20 A GeV) to top SPS energy (√sNN = 17.3 GeV, Elab = 158 A GeV). This document presents the physics motivation, the foreseen experimental set-up including integration and radioprotection studies, the current detector choices together with the status of the corresponding R&D, and the outcome of physics performance studies. A preliminary cost evaluation is also carried out

    Letter of Intent:the NA60+ experiment

    Get PDF

    Letter of Intent:the NA60+ experiment

    Get PDF

    Letter of Intent:the NA60+ experiment

    Get PDF

    Letter of Intent:the NA60+ experiment

    Get PDF

    Letter of Intent:the NA60+ experiment

    Get PDF
    We propose a new fixed-target experiment for the study of electromagnetic and hard probes of the Quark-Gluon Plasma (QGP) in heavy-ion collisions at the CERN SPS. The experiment aims at performing measurements of the dimuon spectrum from threshold up to the charmonium region, and of hadronic decays of charm and strange hadrons. It is based on a muon spectrometer, which includes a toroidal magnet and six planes of tracking detectors, coupled to a vertex spectrometer, equipped with Si MAPS immersed in a dipole field. High luminosity is an essential requirement for the experiment, with the goal of taking data with 106 incident ions/s, at collision energies ranging from √sNN = 6.3 GeV (Elab = 20 A GeV) to top SPS energy (√sNN = 17.3 GeV, Elab = 158 A GeV). This document presents the physics motivation, the foreseen experimental set-up including integration and radioprotection studies, the current detector choices together with the status of the corresponding R&D, and the outcome of physics performance studies. A preliminary cost evaluation is also carried out

    Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    No full text
    This paper presents the design and realization of a three degrees of freedom (DOFs) displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system
    • …
    corecore