4,287 research outputs found

    Applications of fiber lasers for the development of compact photonic devices

    Get PDF

    Ablation debris control by means of closed thick film filtered water immersion

    Get PDF
    The performance of laser ablation generated debris control by means of open immersion techniques have been shown to be limited by flow surface ripple effects on the beam and the action of ablation plume pressure loss by splashing of the immersion fluid. To eradicate these issues a closed technique has been developed which ensured a controlled geometry for both the optical interfaces of the flowing liquid film. This had the action of preventing splashing, ensuring repeatable machining conditions and allowed for control of liquid flow velocity. To investigate the performance benefits of this closed immersion technique bisphenol A polycarbonate samples have been machined using filtered water at a number of flow velocities. The results demonstrate the efficacy of the closed immersion technique: a 93% decrease in debris is produced when machining under closed filtered water immersion; the average debris particle size becomes larger, with an equal proportion of small and medium sized debris being produced when laser machining under closed flowing filtered water immersion; large debris is shown to be displaced further by a given flow velocity than smaller debris, showing that the action of flow turbulence in the duct has more impact on smaller debris. Low flow velocities were found to be less effective at controlling the positional trend of deposition of laser ablation generated debris than high flow velocities; but, use of excessive flow velocities resulted in turbulence motivated deposition. This work is of interest to the laser micromachining community and may aide in the manufacture of 2.5D laser etched patterns covering large area wafers and could be applied to a range of wavelengths and laser types

    Laser micromachining of lithium niobate-based resonant sensors towards medical devices applications

    Get PDF
    This paper presents a micromachining process for lithium niobate (LiNbO3) material for the rapid prototyping of a resonant sensor design for medical devices applications. Laser micromachining was used to fabricate samples of lithium niobate material. A qualitative visual check of the surface was performed using scanning electron microscopy. The surface roughness was quantitatively investigated using an optical surface profiler. A surface roughness of 0.526 ÎŒm was achieved by laser micromachining. The performance of the laser-micromachined sensor has been examined in different working environments and different modes of operation. The sensor exhibits a Quality-factor (Q-factor) of 646 in a vacuum; and a Q-factor of 222 in air. The good match between the modelling and experimental results shows that the laser-micromachined sensor has a high potential to be used as a resonance biosensor

    Application of self-mixing interferometry for depth monitoring in the ablation of TiN coatings

    Get PDF
    Among possible monitoring techniques, self-mixing interferometry stands out as an appealing option for online ablation depth measurements. The method uses a simple laser diode, interference is detected inside the diode cavity and measured as the optical power fluctuation by the photodiode encased in the laser diode itself. This way, self-mixing interferometry combines the advantages of a high resolution point displacement measurement technique, with high compactness and easiness of operation. For a proper adaptation of self-mixing interferometry use in laser micromachining to monitor ablation depth, certain optical, electronical, and mechanical limitations need to be overcome. In laser surface texturing of thin ceramic coatings, the ablation depth control is critically important to avoid damage by substrate contamination. In this work, self-mixing interferometry was applied in the laser percussion drilling of TiN coatings. The ∌4 Όm thick TiN coatings were drilled with a 1 ns green fiber laser, while the self-mixing monitoring was applied with a 785 nm laser diode. The limitations regarding the presence of process plasma are discussed. The design criteria for the monitoring device are explained. Finally, the self-mixing measurements were compared to a conventional optical measurement device. The concept was validated as the measurements were statistically the same

    Using Micro-Raman Spectroscopy to Assess MEMS Si/SiO2 Membranes Exhibiting Negative Spring Constant Behavior

    Get PDF
    We introduce a novel micro-mechanical structure that exhibits two regions of stable linear positive and negative stiffness. Springs, cantilevers, beams and any other geometry that display an increasing return force that is proportional to the displacement can be considered to have a “Hookean” positive spring constant, or stiffness. Less well known is the opposite characteristic of a reducing return force for a given deflection, or negative stiffness. Unfortunately many simple negative stiffness structures exhibit unstable buckling and require additional moving components during deflection to avoid deforming out of its useful shape. In Micro-Electro-Mechanical Systems (MEMS) devices, buckling caused by stress at the interface of silicon and thermally grown SiO2 causes tensile and compressive forces that will warp structures if the silicon layer is thin enough. The 1 mm2 membrane structures presented here utilizes this effect but overcome this limitation and empirically demonstrates linearity in both regions. The Si/SiO2 membranes presented deflect ~17 ÎŒm from their pre-released position. The load deflection curves produced exhibit positive linear stiffness with an inflection point holding nearly constant with a slight negative stiffness. Depositing a 0.05 ÎŒm titanium and 0.3 ÎŒm layer of gold on top of the Si/SiO2 membrane reduces the initial deflection to ~13.5 ÎŒm. However, the load deflection curve produced illustrates both a linear positive and negative spring constant with a fairly sharp inflection point. These results are potentially useful to selectively tune the spring constant of mechanical structures used in MEMS. The structures presented are manufactured using typical micromachining techniques and can be fabricated in-situ with other MEMS devices

    Integrated Lithographic Molding for Microneedle-Based Devices

    Get PDF
    This paper presents a new fabrication method consisting of lithographically defining multiple layers of high aspect-ratio photoresist onto preprocessed silicon substrates and release of the polymer by the lost mold or sacrificial layer technique, coined by us as lithographic molding. The process methodology was demonstrated fabricating out-of-plane polymeric hollow microneedles. First, the fabrication of needle tips was demonstrated for polymeric microneedles with an outer diameter of 250 mum, through-hole capillaries of 75-mum diameter and a needle shaft length of 430 mum by lithographic processing of SU-8 onto simple v-grooves. Second, the technique was extended to gain more freedom in tip shape design, needle shaft length and use of filling materials. A novel combination of silicon dry and wet etching is introduced that allows highly accurate and repetitive lithographic molding of a complex shape. Both techniques consent to the lithographic integration of microfluidic back plates forming a patch-type device. These microneedle-integrated patches offer a feasible solution for medical applications that demand an easy to use point-of-care sample collector, for example, in blood diagnostics for lithium therapy. Although microchip capillary electrophoresis glass devices were addressed earlier, here, we show for the first time the complete diagnostic method based on microneedles made from SU-8
    • 

    corecore