1,038 research outputs found

    Wireless Power Transfer For Biomedical Applications

    Get PDF
    In this research wireless power transfer using near-field inductive coupling is studied and investigated. The focus is on delivering power to implantable biomedical devices. The objective of this research is to optimize the size and performance of the implanted wireless biomedical sensors by: (1) proposing a hybrid multiband communication system for implantable devices that combines wireless communication link and power transfer, and (2) optimizing the wireless power delivery system. Wireless data and power links are necessary for many implanted biomedical devices such as biosensors, neural recording and stimulation devices, and drug delivery and monitoring systems. The contributions from this research work are summarized as follows: 1. Development of a combination of inductive power transfer and antenna system. 2. Design and optimization of novel microstrip antenna that may resonate at different ultra-high frequency bands including 415 MHz, 905 MHz, and 1300MHz. These antennas may be used to transfer power through radiation or send/receive data. 3. Design of high-frequency coil (13.56 MHz) to transfer power and optimization of the parameters for best efficiency. 4. Study of the performance of the hybrid antenna/coil system at various depths inside a body tissue model. 5. Minimizing the coupling effect between the coil and the antenna through addressed by optimizing their dimensions. 6. Study of the effects of lateral and angular misalignment on a hybrid compact system consisting of coil and antenna, as well as design and optimize the coilĂąs geometry which can provide maximum power efficiency under misalignment conditions. 7. Address the effects of receiver bending of a hybrid power transfer and communication system on the communication link budget and the transmitted power. 8. Study the wireless power transfer safety and security systems

    Design and Optimization of Inductively Coupled Spiral Square Coils for Bio-Implantable Micro-System Device

    Get PDF
    Due to the development of biomedical microsystems technologies, the use of wireless power transfer systems in biomedical application has become very largely used for powering the implanted devices. The wireless power transfer by inductive resonance coupling link, is a technic for powering implantable medical devices (IMDs) between the external and implanted circuits. In this paper we describe the design of an inductive resonance coupling link using for powering small bio-implanted devices such as implantable bio-microsystem, peacemaker and cochlear implants. We present the reduced design and an optimization of small size obtained spiral coils of a 9.5 mm2 implantable device with an operating frequency of 13.56 MHz according to the industrial scientific-medical (ISM). The model of the inductive coupling link based on spiral square coils design is developed using the theoretical analysis and optimization geometry of an inductive link. For a mutual distance between the two coils at 10mm, the power transfer efficiency is about 79% with , coupling coefficient of 0.075 and a mutual inductance value of 2”H. In comparison with previous works, the results obtained in this work showed better performance such as the weak inter coils distance, the hight efficiency power transfer and geometry

    Design of Wireless Power Transfer and Data Telemetry System for Biomedical Applications

    Get PDF
    With the advancement of biomedical instrumentation technologies sensor based remote healthcare monitoring system is gaining more attention day by day. In this system wearable and implantable sensors are placed outside or inside of the human body. Certain sensors are needed to be placed inside the human body to acquire the information on the vital physiological phenomena such as glucose, lactate, pH, oxygen, etc. These implantable sensors have associated circuits for sensor signal processing and data transmission. Powering the circuit is always a crucial design issue. Batteries cannot be used in implantable sensors which can come in contact with the blood resulting in serious health risks. An alternate approach is to supply power wirelessly for tether-less and battery- less operation of the circuits.Inductive power transfer is the most common method of wireless power transfer to the implantable sensors. For good inductive coupling, the inductors should have high inductance and high quality factor. But the physical dimensions of the implanted inductors cannot be large due to a number of biomedical constraints. Therefore, there is a need for small sized and high inductance, high quality factor inductors for implantable sensor applications. In this work, design of a multi-spiral solenoidal printed circuit board (PCB) inductor for biomedical application is presented. The targeted frequency for power transfer is 13.56 MHz which is within the license-free industrial, scientific and medical (ISM) band. A figure of merit based optimization technique has been utilized to optimize the PCB inductors. Similar principal is applied to design on-chip inductor which could be a potential solution for further miniaturization of the implantable system. For layered human tissue the optimum frequency of power transfer is 1 GHz for smaller coil size. For this reason, design and optimization of multi-spiral solenoidal integrated inductors for 1 GHz frequency is proposed. Finally, it is demonstrated that the proposed inductors exhibit a better overall performance in comparison with the conventional inductors for biomedical applications

    Resonant inductive coupling as a potential means for wireless power transfer to printed spiral coil

    Get PDF
    This paper proposes an inductive coupled wireless power transfer system that analyses the relationship between induced voltage and distance of resonating inductance in a printed circuit spiral coils. The resonant frequency produced by the circuit model of the proposed receiving and transmitting coils are analysed by simulation and laboratory experiment. The outcome of the two results are compared to verify the validity of the proposed inductive coupling system. Experimental measurements are consistent with simulations over a range of frequencies spanning the resonance

    A design technique for optimizing resonant coils and the energy transfer of inductive links.

    Get PDF
    Power transfer efficiency (PTE) is a key performance parameter in development work on resonant inductive power transfer (IPT) systems. Geometrically optimizing the transmitter (Tx) and receiver (Rx) coil pair is a way of improving the IPT system's efficiency. In this article, a new figure-of-merit (FoM) is proposed to find an optimum coil geometry which maximizes the PTE. The employed FoM parameter, called the 'strong coupling factor' (Pscf), is defined such that its value indicates how strongly the Tx and Rx coils are linked together. Considering the IPT application and its physical size constraints, a proper selection method for identifying the numerical value of Pscf is essential for optimal coil geometry design. This article presents an iterative algorithm to assist in the selection of the most favorable Pscf value which provides maximized PTE for the designed optimum coil geometry. Design examples of two nominal IPT systems at frequencies of 415 and 0.1 MHz are used to investigate the design algorithm. Theoretical calculations show the optimum geometry designed for the IPT system operating at 415 MHz, with coupling coefficient (K) of 0.2, can achieve maximum PTE of 85.70%. Measurements presented from a practical Tx/Rx coil pair in the IPT link operating at 0.1 MHz, with K=0.05, show a PTE of 83.10% against a calculated PTE of 84.11% validating the design process.This article is an expanded version from the IEEE Wireless Power Week, London, U.K., June 17–20, 2019

    Printed Spiral Coil Design, Implementation, And Optimization For 13.56 MHz Near-Field Wireless Resistive Analog Passive (WRAP) Sensors

    Get PDF
    Noroozi, Babak. Ph.D. The University of Memphis. June 2020. Printed Spiral Coil Design, Implementation, and Optimization for 13.56 MHz Near-Field Wireless Resistive Analog Passive (WRAP) Sensors. Major Professor: Dr. Bashir I. Morshed.Monitoring the bio-signals in the regular daily activities for a long time can embrace many benefits for the patients, caregivers, and healthcare system. Early diagnosis of diseases prior to the onset of serious symptoms gives more time to take some preventive action and to begin effective treatment with lower cost. These health and economy benefits are achievable with a user-friendly, low-cost, and unobtrusive wearable sensor that can easily be carried by a patient with no interference with the normal life. The easy application of such sensor brings the smart and connected community (SCC) idea to existence. The spread of a designated disease, like COVID-19, can be studied by collecting the physiological signals transmitted from the wearable sensors in conjunction with a mobile app interface. Moreover, such a comfortable wearable sensor can help to monitor the vital signals during fitness activities for workout concerns. The desire of such wearable sensor has been responded in many researches and commercial products such as smart watch and Fitbit. Wireless connection between the sensor on the body and the scanner is the key and common factor of all convenient wearables. This essential feature has been currently addressed by the costly techniques which is the main impediment to be widely applicable. The existing wireless methods including WiFi, Bluetooth, RFID, and NFC impose cost, complexity, weight, and extra maintenance including battery replacement or recharging, which drove us to propose a low-cost, convenient, and simple technique for wireless connection suitable for battery-less fully-passive sensors. Using a pair of coils connected by the near-field magnetic induction has been copiously used in wireless power transfer (WPT) for medical and industrial applications. However, near field RFID and NFC rely on this technique with active circuits. In contrast, we have proposed a wireless resistive analog passive (WRAP) sensor in which a resistive transducer at the secondary side, affects the primary quality factor (Q) through the inductive connection between a pair of square-shaped Printed Spiral Coils (PSC). The primary 13.56 MHz (ISM band) signal is modulated in response to the continuous change of bio-signal and the amount of response to the unit change in transducer resistance is defined as sensitivity. A higher sensitivity enables the system to respond to the smaller bio-signals and increases the coils maximum relative mobilities. The PSCs specifications and circuit components determine the sensitivity and its tolerance to the coils displacements. We first define and formulize the objective function for coil and components optimization to achieve the maximum sensitivity. Although the optimization methods do not show much different results, due to the speed and simplicity, the Genetic Algorithm (GA) technique is chosen as an advanced method. Then in second optimization stage, the axial and lateral distances that affect the mutual inductance are introduced to the optimization process. The results as a pair of PSCs profiles and the associated circuit components are obtained and fabricated that produced the maximum sensitivity and misalignment tolerance. For the sake of patient comfort, the secondary coil size is fixed at 20 mm and the primary coil is optimized at 60 mm with the maximum (normalized) sensitivity 1.3 m for 16 mm axial distance. If the Read-Zone is defined as the space in which the center of secondary coil can move and the sensitivity keeps at least half of its maximum value, the best Read-Zone has a conical shape with the base radius 22.5 mm and height 14 mm. The analytical results are verified by the measurement results on the fabricated coils and circuits

    Design and miniaturization of a microsystem to power biomedical implants using grey wolf optimizer-based cuckoo search algorithm

    Get PDF
    One of the greatest techniques, inductive coupling is frequently utilized in the biomedical sector for wireless energy transfer to implants. The aim of this article is to develop and analyze the effect of inductor geometrical characteristics, distance between transmitter (TX) and receiver (RX) and also the operating frequency on the wireless power transfer system, using grey wolf optimizer-based cuckoo search (GWO-CS) algorithm. Power transfer efficiency (PTE), power provided to load, and other critical components must all be improved or maximized and miniaturaze the microsystem proposed. The invention, design, and optimization of coils square spirals in a wireless energy transfer system using a resonant inductive link are the emphasis of this paper. The GWO-CS approach is evaluated to existing methods, demonstrated by simulations and to demonstrate the effectiveness of the suggested strategy

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 ÎŒW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers
    • 

    corecore