199 research outputs found

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Kinematically optimal hyper-redundant manipulator configurations

    Get PDF
    “Hyper-redundant” robots have a very large or infinite degree of kinematic redundancy. This paper develops new methods for determining “optimal” hyper-redundant manipulator configurations based on a continuum formulation of kinematics. This formulation uses a backbone curve model to capture the robot's essential macroscopic geometric features. The calculus of variations is used to develop differential equations, whose solution is the optimal backbone curve shape. We show that this approach is computationally efficient on a single processor, and generates solutions in O(1) time for an N degree-of-freedom manipulator when implemented in parallel on O(N) processors. For this reason, it is better suited to hyper-redundant robots than other redundancy resolution methods. Furthermore, this approach is useful for many hyper-redundant mechanical morphologies which are not handled by known methods

    Design of Massive Actuators For 3D Robot Manipulators

    Get PDF
    In this paper, a novel parallel manipulator with discrete control system is developed. An efficient method such as Inverse Static Analysis (ISA) is employed to determine the state of each actuator on parallel manipulator when the position or force of manipulator is already known. The designing a parallel manipulator with 16 actuators which are controlled discretely is a must because the mechanism will use artificial methods in dealing with the ISA problem. In this approach, mathematical model is not required. The research method used simulation software and hardware testing with the case of parallel manipulator with 16 actuators. Simulations with typical desired force inputs are presented and a good performance of the mechanism is obtained. The results showed that the parallel manipulator has the Root Mean Squared Error (RMSE) has less than 3% and can be used for artificial intelligence implementation

    Applications of Artificial Intelligence Control for Parallel Discrete-Manipulators

    Get PDF
    Parallel Discrete-Manipulators are a special kind of force regulated manipulators which can undergo continuous motions despite being commanded through a large but finite number of states only. Real-time control of such systems requires very fast and efficient methods for solving their inverse static analysis. In this paper, artificial intelligence techniques (AI) are investigated for addressing the inverse static analysis of a planar parallel array featuring ten three-state force actuators and two applications using 3D Massively Parallel Robots (MPRs) with one and two layers. In particular, the research method used simulation software and hardware testing with the case of parallel manipulator with two level discrete pneumatic actuators. Simulations with typical desired displacement inputs are presented and a good performance of the results compared to AI is obtained. The comparison showed that the parallel manipulator has the Root Mean Squared Error (RMSE) has less than 10% and can be used for controlling the ternary states of discrete manipulators via AI

    Space Frames with Multiple Stable Configurations

    Get PDF
    This paper is concerned with beamlike spaceframes that include a large number of bistable elements, and exploit the bistability of the elements to obtain structures with multiple stable configurations. By increasing the number of bistable elements, structures with a large number of different configurations can be designed. A particular attraction of this approach is that it produces structures able to maintain their shape without any power being supplied. The first part of this paper focuses on the design and realization of a low-cost snap-through strut, whose two different lengths provide the required bistable feature. A parametric study of the length-change of the strut in relation to the peak force that needs to be applied by the driving actuators is carried out. Bistable struts based on this concept have been made by injection molding nylon. Next, beamlike structures based on different architectures are considered. It is shown that different structural architectures produce structures with workspaces of different size and resolution, when made from an identical number of bistable struts. One particular architecture, with 30 bistable struts and hence over 1 billion different configurations, has been demonstrated

    DESIGN, DEVELOPMENT, AND EVALUATION OF A DISCRETELY ACTUATED STEERABLE CANNULA

    Get PDF
    Needle-based procedures require the guidance of the needle to a target region to deliver therapy or to remove tissue samples for diagnosis. During needle insertion, needle deflection occurs due to needle-tissue interaction which deviates the needle from its insertion direction. Manipulating the needle at the base provides limited control over the needle trajectory after the insertion. Furthermore, some sites are inaccessible using straight-line trajectories due to delicate structures that need to be avoided. The goal of this research is to develop a discretely actuated steerable cannula to enable active trajectory corrections and achieve accurate targeting in needle-based procedures. The cannula is composed of straight segments connected by shape memory alloy (SMA) actuators and has multiple degrees-of-freedom. To control the motion of the cannula two approaches have been explored. One approach is to measure the cannula configuration directly from the imaging modality and to use this information as a feedback to control the joint motion. The second approach is a model-based controller where the strain of the SMA actuator is controlled by controlling the temperature of the SMA actuator. The constitutive model relates the stress, strain and the temperature of the SMA actuator. The uniaxial constitutive model of the SMA that describes the tensile behavior was extended to one-dimensional pure- bending case to model the phase transformation of the arc-shaped SMA wire. An experimental characterization procedure was devised to obtain the parameters of the SMA that are used in the constitutive model. Experimental results demonstrate that temperature feedback can be effectively used to control the strain of the SMA actuator and image feedback can be reliably used to control the joint motion. Using tools from differential geometry and the configuration control approach, motion planning algorithms were developed to create pre-operative plans that steer the cannula to a desired surgical site (nodule or suspicious tissue). Ultrasound-based tracking algorithms were developed to automate the needle insertion procedure using 2D ultrasound guidance. The effectiveness of the proposed in-plane and out-of-plane tracking methods were demonstrated through experiments inside tissue phantom made of gelatin and ex-vivo experiments. An optical coherence tomography probe was integrated into the cannula and in-situ microscale imaging was performed. The results demonstrate the use of the cannula as a delivery mechanism for diagnostic applications. The tools that were developed in this dissertation form the foundations of developing a complete steerable-cannula system. It is anticipated that the cannula could be used as a delivery mechanism in image-guided needle-based interventions to introduce therapeutic and diagnostic tools to a target region
    • …
    corecore