207 research outputs found

    The global unified parallel file system (GUPFS) project: FY 2002 activities and results

    Full text link

    Simulation and design of storage area network

    Get PDF
    Master'sMASTER OF ENGINEERIN

    High availability using virtualization

    Get PDF
    High availability has always been one of the main problems for a data center. Till now high availability was achieved by host per host redundancy, a highly expensive method in terms of hardware and human costs. A new approach to the problem can be offered by virtualization. Using virtualization, it is possible to achieve a redundancy system for all the services running on a data center. This new approach to high availability allows to share the running virtual machines over the servers up and running, by exploiting the features of the virtualization layer: start, stop and move virtual machines between physical hosts. The system (3RC) is based on a finite state machine with hysteresis, providing the possibility to restart each virtual machine over any physical host, or reinstall it from scratch. A complete infrastructure has been developed to install operating system and middleware in a few minutes. To virtualize the main servers of a data center, a new procedure has been developed to migrate physical to virtual hosts. The whole Grid data center SNS-PISA is running at the moment in virtual environment under the high availability system. As extension of the 3RC architecture, several storage solutions have been tested to store and centralize all the virtual disks, from NAS to SAN, to grant data safety and access from everywhere. Exploiting virtualization and ability to automatically reinstall a host, we provide a sort of host on-demand, where the action on a virtual machine is performed only when a disaster occurs.Comment: PhD Thesis in Information Technology Engineering: Electronics, Computer Science, Telecommunications, pp. 94, University of Pisa [Italy

    Storage Area Networks (SANs) in Business Environment

    Get PDF
    Storage Area Networks (SAN) in Business Environment is titled and initiated to design and implement Storage Area Networks architecture in the business operation. The project is divided into two terms, first is the research ofStorage Area Networks and the second is system development onthe Storage Area Networks Knowledge Management System. Research on the Storage Area Networks was based on the problem statement and objective of the project while the Storage Area Networks Knowledge Management System is the system in making decision to implement Storage Area Networks. The project will require a hybrid model for System Development Life Cycle (SDLC) methodology. Reviews on the system will be made according to the SDLC and the objectives of the project. Artificial Intelligent module is used for the Storage Area Networks system to determine the best Storage Area Networks solution for the business. Research will be more onthe implementation of the Storage Area Networks in the business based onthe cost, availability and the architecture of the Storage Area Networks. Advantages of the Storage Area Networks and several criteria inthe Storage Area Networks will be part of the Storage Area Networks research. Storage Area Networks give the best solution for business as the database is an important asset for the business. Performance, availability, flexibility and scalability are the main subject in considering Storage Area Networks. Keywords: Storage Area Networks, Knowledge Management System, hybrid model. System Development Life Cycl

    Sixth Goddard Conference on Mass Storage Systems and Technologies Held in Cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems

    Get PDF
    This document contains copies of those technical papers received in time for publication prior to the Sixth Goddard Conference on Mass Storage Systems and Technologies which is being held in cooperation with the Fifteenth IEEE Symposium on Mass Storage Systems at the University of Maryland-University College Inn and Conference Center March 23-26, 1998. As one of an ongoing series, this Conference continues to provide a forum for discussion of issues relevant to the management of large volumes of data. The Conference encourages all interested organizations to discuss long term mass storage requirements and experiences in fielding solutions. Emphasis is on current and future practical solutions addressing issues in data management, storage systems and media, data acquisition, long term retention of data, and data distribution. This year's discussion topics include architecture, tape optimization, new technology, performance, standards, site reports, vendor solutions. Tutorials will be available on shared file systems, file system backups, data mining, and the dynamics of obsolescence

    Network storage system simulation and performance optimization

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Scalable Storage for Digital Libraries

    Get PDF
    I propose a storage system optimised for digital libraries. Its key features are its heterogeneous scalability; its integration and exploitation of rich semantic metadata associated with digital objects; its use of a name space; and its aggressive performance optimisation in the digital library domain

    Switching considerations in storage networks.

    Get PDF
    by Leung Yiu Tong.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 96-98).Abstracts in English and Chinese.Chapter 1. --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Thesis Organization --- p.3Chapter 2. --- Storage Network Fundamentals --- p.4Chapter 2.1 --- Storage Network Topology --- p.4Chapter 2.1.1 --- Direct Attached Storage (DAS) --- p.5Chapter 2.1.2 --- Network Attached Storage (NAS) --- p.7Chapter 2.1.3 --- Storage Area Network (SAN) --- p.9Chapter 2.1.3.1 --- SAN and the Fibre Channel Protocol --- p.11Chapter 2.1.4 --- Summary on Storage Network Topology --- p.12Chapter 2.2 --- Storage Protocol --- p.15Chapter 2.2.1 --- Fibre Channel --- p.15Chapter 2.2.1.1 --- Fibre Channel over IP (FCIP) --- p.17Chapter 2.2.1.2 --- Internet Fibre Channel Protocol (iFCP) --- p.19Chapter 2.2.2 --- Internet SCSI (iSCSI) --- p.20Chapter 2.2.3 --- InfiniBand --- p.22Chapter 2.2.4 --- Review on Storage Network Protocol --- p.25Chapter 2.3 --- Standard Organization --- p.27Chapter 2.4 --- Summary --- p.28Chapter 3. --- Switching Design for Storage Networks --- p.30Chapter 3.1. --- Shared Bus Design --- p.32Chapter 3.2. --- Time Division Switch --- p.36Chapter 3.3. --- Share Buffer Memory Switch --- p.37Chapter 3.3.1 --- Parallel Memory Array --- p.40Chapter 3.3.2 --- Distributive Storage --- p.43Chapter 3.4. --- Crossbar Switch --- p.45Chapter 3.4.1 --- Arbitrated Crossbar vs. Buffered Crossbar --- p.46Chapter 3.4.1.1 --- Arbitrated Crossbar Switch --- p.47Chapter 3.4.1.2 --- Buffered Crossbar Switch --- p.48Chapter 3.4.2 --- Switch Scheduling --- p.49Chapter 3.4.2.1 --- Bipartite Matching --- p.50Chapter 3.4.2.2 --- Token-based Distributive Scheduling --- p.53Chapter 3.4.2.3 --- Resource Counting using Semaphore --- p.56Chapter 3.5. --- Algebraic Switches --- p.60Chapter 3.5.1 --- Switching by Conditionally Nonblocking Properties --- p.61Chapter 3.5.2 --- Self-Routing Mechanism with Zero-Bit Buffering --- p.64Chapter 3.5.3 --- Multistage Interconnection of Self-routing Concentrators --- p.69Chapter 3.6. --- Summary --- p.73Chapter 4. --- Investigating Switching Issue in Storage Networks --- p.74Chapter 4.1 --- Choosing a Suitable Switch --- p.74Chapter 4.2 --- Quality of Service (QoS) --- p.76Chapter 4.3 --- Multicasting --- p.77Chapter 4.3.1 --- Crossbar Switch --- p.78Chapter 4.3.2 --- Shared-Buffer Memory Switches --- p.80Chapter 4.3.3 --- Algebraic Switch --- p.82Chapter 4.3.4 --- Application on Multicast Transmission --- p.86Chapter 4.4 --- Load Balancing Mechanism --- p.87Chapter 4.5 --- Optimization on Storage Utilization --- p.91Chapter 4.6 --- Summary --- p.93Chapter 5. --- Conclusion and Summary of Original Contributions --- p.9
    corecore