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Summary 
Storage systems are generally built by Redundant Array of Independent Disks 

(RAID) technology to meet the high performance requirement of enterprise 

applications. Besides RAID technology, the interconnection between the Hard Disk 

Drives (HDDs) and the RAID controller plays an important role in a high performance 

storage system.  

Recently, the Fibre Channel Arbitrated Loop (FC-AL) has become the most 

common interconnection in the high-end storage systems. The FC-AL topology 

provides a high performance serial shared connection between the RAID controller and 

the attached HDDs. In such shared connection, all participating devices have to 

compete for the access to the loop. When the loop is occupied by data transmission, the 

controller has to wait until the loop is free in order to deliver I/O commands to the 

HDDs. In such situations, the target HDDs may stay inactive, resulting in 

inefficiencies of HDD utilization and finally affecting the whole RAID system 

performance.  

In order to evaluate the performance of a network storage system, this thesis 

develops an FC-AL based network storage system simulation model that can simulate 

the FC-AL protocol up to frame level. The simulation model is developed through a 

“bottom-up” approach. The FC-AL transmission is modeled in the first place, followed 

by the development of L_Port’s other functionalities including the Loop Port State 

Machine [LPSM] and the Alternative Buffer-to-Buffer flow control. After that, the 

HBA model is provided and the system level integration is performed with additional 

consideration of HBA device driver modeling. Lastly, the FC-AL based network 
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storage system simulation model is calibrated and validated through actual system 

experiments. The comparison between actual experiments and simulation shows that 

the simulation model can achieves high accuracy as to 3% mismatching for read I/Os. 

A new scheduling algorithm for the FC-AL RAID system, the Command-First 

Algorithm, is proposed to enable RAID controller to aggressively send I/O commands 

to the HDDs with higher priority than I/O data. The Command-First Algorithm is 

evaluated using the simulation model. The simulation results show that the 

performance improvement contributed by the new algorithm is up to 50% in certain 

conditions. It is also shown that there are no negative effects for the Command-First 

Algorithm.   
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Chapter 1  

Introduction 

1.1 Introduction to Data Storage & Storage System 

Along with the rapid development of IT technology, the demand for higher 

performance and bigger capacity on data storage has been constantly increasing in the 

past decades. Multimedia technology enables people to store videos in the form of 

hundreds of mega bytes of digital data and to playback anytime. Large databases are 

widely implemented for decision-making or process controlling, which requires data to 

be up-to-dated and available constantly. A large number of mission-critical 

applications demand for high performance for data storage. 

The magnetic hard disk drives (HDDs) are used as the primary storage device for a 

wide range of applications. Since it was invented half-century ago by IBM, the HDDs 

have undergone continuous technological evolutions, yielding larger-capacity, 

higher-performance, smaller-form-factor and lower-cost. The areal density of HDD has 

increased about 35 million times since it was first introduced [6]. The recent CGR 

(compound growth rate) of the areal density is about 100 percent, or doubling every 

year, which has broken through the Moore’s law of doubling capacity every eighteen 

months for the semiconductor growing. In year 2005, the HDDs with capacity of 

hundreds gigabytes are commonly available.  

Even with the areal density positively advancement, the total HDD shipment 

surprisingly does not decrease. The two famous market research companies, 

TrendFOCUS and IDC, both forecasted over 20 percent grow of total units of HDD 
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shipment from about 305 million units in year 2004 to about 378 million units in year 

2005. The essential reason for demanding more HDDs is that the HDD access 

performance increases much slowly comparing to the capacity improvement. The CGR 

slopes of the mechanical seeking time and the rotational latency of HDD has only 

about 25 percent [5]. The individual HDD is therefore not able to meet the enterprise’s 

performance demand.  

To fill the performance gap and to optimize the cost and reliability, the storage 

system that can provide aggregated performance of multiple HDDs has long been one 

of the corner stones for enterprise data storage. The RAID technology enables the 

storage system to serve I/O request in parallel through striping user data across 

multiple HDDs, and to enhance system reliability by parity protection preventing data 

lost in the event of individual HDD failure.  By introducing large memory cache, the 

storage system can accelerate the I/O requests without reading data from the HDDs. 

Many other technologies have been developed to optimize the performance. One 

important technology is the interconnection between the HDDs and the RAID 

controller, which may limit the storage system performance.  

A storage system usually consists of one or more separate control units and 

multiple HDDs. The control units access to the HDDs through an interconnection. In 

ideal situations, each HDD shall dedicatedly connect to the storage controller by means 

of unblocked switching network for high parallelism, but it would require much higher 

cost. The balance between the parallel performance and the cost is the crucial factor for 

success. A shared connection is therefore used as an alternative to provide the 

sufficient bandwidth. After the traditional SCSI bus architecture, the Fibre Channel 

Arbitrated Loop (FC-AL) has become the most frequently used interconnection for 

high-end network storage systems. 
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1.2 Main Contributions 

This thesis provides four major contributions to the studies of FC-AL based 

high-end storage systems as following: 

 An effective and detailed simulation model is built to support frame and 

transmission word level simulation; 

 Hardware trace level calibration and actual system experiment comparison are 

performed for simulation model validation; 

 A new schedule algorithm is proposed to aggressively delivery I/O commands 

to optimize I/O performance; 

 The simulation results show that the performance improvement contributed by 

the new algorithm is up to 50%. 

1.3 Organization  

The thesis is organized as follows. Chapter 2 presents the basic background of 

storage systems and investigates the current status of research in FC-AL network 

storage systems. Chapter 3 conducts operational analysis on FC-AL based storage 

systems and presents the Command-First Algorithm.  In order to effectively evaluate 

the performance of a network storage system, a detail simulation model for FC-AL 

storage system is presented in Chapter 4. The simulation model is calibrated and 

validated in Chapter 5. Chapter 6 presents the I/O performance evaluation of the 

Command-First Algorithm by simulation. Finally, Chapter 7 summarizes the research 

and discusses the future research work. 
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Chapter 2  

Background and Related Work 

2.1 Fibre Channel Overview 

Fibre Channel (FC) is a high speed serial interface defined by the ANSI 

(American National Standard Institute) as an open industry standard. There are more 

than 20 published standards or drafts for different aspects of FC [13].  More recent 

development of the FC standards can be found in the FC Project of the T11 Technical 

Committee [12].  

FC is generally characterized by high speed, long distance, and high scalability 

for storage.  It provides a general transport network platform for Upper Level Protocols 

(ULP) such as SCSI (Small Computer Systems Interface [38]). The SCSI mapping over 

the FC is defined in FCP (Fibre Channel Protocol for SCSI) [11]. 

FC can be logically divided into five logical layers, numbered from bottom to 

top as FC-0 to FC-4, as shown in Figure 2.1. Similar to layers in the OSI’s model, each 

FC logical layer performs a certain set of functionalities interfacing to nearby layers. 

The FC-0 layer defines the physical interface for the FC network for the specification 

of transmitter, receiver and the signal propagation media, which includes the fiber 

optic cable and the electronic copper cable. The FC-1 layer performs 8bit/10bit coding 

and decoding and error control.  Sitting on top of the FC-1 layer, the FC-2 organizes 

information into a set of frames, sequences, and exchanges and defines other signaling 

protocols such as flow control. The FC-3 layer provides additional common services 

such as multiple link trunking, multicasting and other services.  The FC-4 layer 
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facilitates the mapping to upper-level protocols such as SCSI, IP, and others. 

Additionally, there is a Fibre Channel Arbitrated Loop (FC-AL) [9] protocol between 

the FC-1 and FC-2 layers labeled as FC-1.5 in Figure 2.1, which allows the attachment 

of multiple devices to a common loop without switches. The FC-0, FC-1 and FC-2 layer 

are collectively defined in FC-PH [10].  

 

Figure 2.1 Fibre Channel Logical Layer 

 Three basic classes of service are defined in FC standard: Dedicated 

connection (Class 1), Multiplex (Class 2) and Datagram (Class 3). Class 1 provides 

circuit switch, dedicated bandwidth connection. The connection must be established 

before data can be transferred. Once the connection is established, the full bandwidth is 

guaranteed until one party releases the connection. Class 2 is a connectionless service. 

Frames are independently routed to the destination port by the Fabric, if present. An 

end-to-end acknowledgement of frame reception is required for this class. Class 3 is 

similar to Class 2, except that no acknowledgement of receipt is given. In Class 3, the 

fabric, if present, does not guarantee the successful delivery of frame and it may discard 

frames without notification under high-traffic or error conditions; any error recovery or 

notification is done at the ULP level. Without acknowledgement, the Class 3 service 
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provides the quickest transmission and thus it is the most frequently used in various 

applications including the SCSI application for storage systems. 

2.2 Fibre Channel for Storage 

2.2.1  Fibre Channel SANs 

A Storage Area Network (SAN) is a dedicated, centrally managed, secured 

information infrastructure, providing any-to-any interconnection of servers and storage 

systems. SANs are currently the preferred solution for fulfilling a wide range of critical 

data storage demands for enterprises [30].  

The FC is presently the dominant protocol used in SAN to provide the high 

performance data connection. The perfect marriage of the two technologies makes the 

great success of both FC and SAN, although other emerging alternatives such as iSCSI 

protocol are now developed as the compliments to FC for low cost and other 

considerations. Many SAN books actually exclusively discussed the Fibre Channel 

technologies adoption, such as [27], [28] and [29]. 

Fibre Channel supports three types of connection topologies, Fabric, Point to Point 

and Arbitration Loop. Since the FC-AL provides a cost effective shared connection 

among multiple devices without using expensive switches, it has become a popular 

means of interconnecting the storage controllers to the attached HDDs. 

2.2.2  FC-AL for Storage System 

Since IBM introduced the world’s first storage device in 1945, the storage system 

has gone through the same period of evolution as the HDD did [5]. Initially, a storage 

subsystem was just a HDD. Over time, more hardware and software functions were 

added to the storage system to achieve higher performance, better reliability and lower 
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cost [6]. The RAID technologies were first proposed in 1980s in [7] to provide a 

means of parallelism between multiple HDDs to improve the aggregate I/O 

performance and at the same time to extend the whole system reliability through 

redundant parity. Since then, various new technologies had been developed to enhance 

and optimize the I/O performance of the RAID storage system [8], and the storage 

system has become a cornerstone of the entire data storage industry. 

Among other factors in a storage system, the interconnection between the storage 

controllers and the HDDs is important for the high I/O performance and reliability. 

Alternative to the traditional parallel SCSI bus architecture, the FC-AL provides a high 

performance reliable common sharing serial interconnection for multiple devices. 

Although it is shared topology, the loop has the channel property with which one 

device can establish a dedicated communication channel with anther device on the 

loop. 

The FC-AL topology supports up to 127 devices within a single loop.  With 1 G 

link rate (precisely 1.0625 GHz clock), the loop provides a common 100 MB/s 

bandwidth information transport vehicle for all devices. With support of full duplex, one 

may transmit or receive data frames simultaneously and thus achieves double the 

bandwidth. The latest development of 4 G link rate further increases the bandwidth to 

400 MB/s and 800 MB/s for half duplex and full duplex respectively. With optical 

cables, the physical distance of a loop may extend to 10 kilometers. Additionally, 

inherited from the common FC feature, the loop provides higher reliability of 

communication. All the above mentioned advantages make the FC-AL connection far 

exceed the traditional parallel ATA and SCSI interface. Figure 2.2 shows such a storage 

system deploying the FC-AL topology with one initiator (controller node) and multiple 

HDDs. 
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Figure 2.2 Fibre Channel Arbitrated Loop Topology 

Nowadays, a large number of Fibre Channel HDDs are shipped every month from 

every major HDD vendor. These HDDs are mostly (if not all) used as member HDDs in 

a storage system. They are most frequently connected through FC-AL loops. It is not 

surprising, then, to see a large number of academic publications on FC-AL related 

storage system architecture. In the work of Shenze Che and Manu Thapar [22], the 

performance of the Video-on-Demand server using FC-AL was compared to traditional 

SCSI interface. The reported performance improvement was 50% better. In [23], the 

authors provided a software architecture enabling FC-AL based RAID system in a 

real-time operating system. The potential of low-cost switching architecture for 

extending FC-AL scalability was studied in [24] and a concreted implementation and 

study of FC-AL architecture in a real application were presented in [25]. 

2.3 Storage System Performance Study Methods  

Many research works have been conducted on storage technology, storage 

networking, and storage subsystem. All those works eventually aim to achieve better 
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performance in terms of higher throughput, shorter latency and wider bandwidth. The 

performance analysis becomes the key to predict, assess, evaluate and explain the 

system’s characteristics. There are generally three approaches to conduct performance 

analysis for computer system: analytical modeling, physical measurement and 

simulation modeling [41].  A survey on the success stories of using these approaches 

to study the storage system performance was provided in [14]. 

The alternative to the analytical modeling and physical measurement is the 

simulation modeling, in which a computer program implements a simplified 

representation of the behavior of the components of the storage system, and then a 

synthetic or actual workload is applied to the simulation program, so that the 

performance of the simulated components and system can be measured. Simulation 

can provide a view of the system behavior at any level of detail, provided that enough 

modeling manpower is available. Trace-driven simulation is an approach that controls 

a simulation model by feeding in a trace, a sequence of specific events at specific time 

intervals. The trace is typically obtained by collecting measurements from an actual 

running system.  

2.3.1  Performance Study by Simulation 

The physical measurement performs testing and collects measurements performance 

data of a running system. By analyzing the relationship between the performance 

characteristics, the workload characteristic, and the storage system components, 

researchers are able to identify problems and give make decisions on purchasing and/or 

configuration for storage system. In [26], Thomas M. Ruwart had conducted 

experimental testing on a real system for different combinations of loop distance and 

hard disk number. 
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The real system experimental tests however are often subjected to the given 

implementations of vendor specific loop devices, such as the number of the frame buffer 

and FC-AL scheduling. Experimental modifications on such hardware are often not 

feasible for academic research. Meanwhile, real system experiments usually involve a 

very high cost. To conduct a study like [26] will require expensive infrastructure such as 

kilometers of fibre optic cables and other equipments.  

On the contract, the simulation does not require the presence of an actual system. In 

[20], John R. Heath and Peter J. Yakutis implemented their simulation models and 

analyzed the performance of FC-AL based storage systems. They discussed the FC-AL 

protocol in detail but they did not provide the calibration and validation detail of the 

simulation model.  Similarly, in [21], David H.C.DU and Tai-Sheng Chang et al. 

compared SSA (Serial Storage Architecture) [39] and FC-AL interfaces for disks by 

simulation, but the detail modeling method of the FC-AL was not given. Xavier [15] and 

Petra [16] also developed simulation model for FC but they modeled more on Fabric 

SAN.  Some published simulation tools for other storage system’s components can also 

be found. The DiskSim[17] and Pantheon[19] are the two well known HDD simulators. 

The former had been used in many HDD performance researches such as the 

time-critical I/O in [18] and [35], and the HDD schedule optimization in [31] and [32]. A 

detail simulation model of a system bus (PCI bus) can be found in [36]. 

Although simulation modeling has been proven to be an effective approach for 

system performance study and new algorithm evaluation, there are some limitations on 

current available simulation tools. Firstly, there are few simulation tools that can support 

detailed enough simulation studies especially when systems under study become more 

complicated. Secondly, a simulation model is an abstracted presentation of an actual 

system. Some system reactions are assumed to have minimum impact to the overall 
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performance and others are modeled as constant overheads (or random variables with 

stochastic distribution). The simulation model must therefore be calibrated with actual 

system measurements for these overhead constants and further be validated by 

examining the simulation results to agree with experimental measurement, before it can 

be used for performance prediction in extended situations. Although some of the above 

mentioned FC-AL studies were done through simulation, the calibration and validation 

of these simulation models were seldom given. It is therefore worthwhile to develop a 

new simulation tool that can simulate the detail behavior of the FC-AL network storage 

system. 

2.3.2  Theoretical Estimation by Analytical Modeling 

The analytical modeling makes attempts to predict storage system performance as a 

function of parameters of the workload, storage components, and system configuration 

by writing mathematical equation. The work in [34] severed as an example of this 

approach. The analytic analysis can provide insight into the steady-state performance 

and give theoretical performance bounds of the storage system. It usually needs queuing 

theory and Markovian analysis, which requires extensive knowledge of probability 

theory. In addition, analytical modeling requires skill at approximating the storage 

system with simplified mathematical models.  

In most analytical works, the internal components of a storage system are modeled 

as various service centers that can process requests at a certain service rate. The arrival 

requests, i.e. the service demands, are assumed to follow certain distribution (mostly in 

Poison Arrival that describes the independent arrival) and the service rate of the 

service centers are of some stochastic pattern (such as Poison Process) as well. 

Although the analytical modeling may lack detail when compared to the real system 

 11
 



physical measurement and the simulation, it gives some theoretical insight of the 

process and effectively predicts the performance bounds of the given storage system. 

In [1], Dr. Zhu et al presented their analytical work on SANs for the purpose of 

identifying performance bottlenecks. A queuing network model for storage system and 

storage network was established from the host systems, along with the FC fabric 

network, to the disk array internal components. Six tiers of services centers were 

defined to model the I/O processing activities, namely Hosts, FC-SW network, Disk 

Array Controller and Cache, FC-AL Network, Disk Controller and Cache and HDA 

Center, as shown in Figure 2.3 adopted from the paper. The Fork/Join model was used 

to analyze the performance of the disk array. The response time and utilization of each 

component as well as the overall system were derived and analyzed based on the 

queuing network theory. 

 With regards to the performance of FC-AL Network, the authors highlighted that 

the “access fairness” algorithm may be a potential problem for disk array controllers to 

obtain the optimal overall performance. 

 

Figure 2.3 Queuing Network for Storage System Adopted From [1] 

 12
 



2.4 Summary 

This chapter has presented a basic background of the FC standard and the FC-AL 

topology used in high-end network storage systems, with an overview of the FC 

logical layer, followed by a short discussion on the related works on the FC-AL based 

storage system. The performance study methods for storage system were investigated, 

and the simulation method has been identified to be an effective approach for detailed 

modeling. 
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Chapter 3  

Command-First Algorithm 

3.1 Analysis of FC-AL Network Storage System 

In today’s Information Technology infrastructure, there are two basic 

technological choices of connecting storage: NAS and SAN. The traditional Network 

Attached Storage (NAS) provides file level storage for Local Area Network (LAN) 

clients/servers. When LAN clients/servers need to access the information stored in the 

NAS, they send file requests to the NAS. The NAS then retrieves the information from 

the attached storage system and response to the request. The SAN technologies provide 

high performance connection between multiple SAN application servers to multiple 
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Switch FabricSwitch Fabric

Local Area NetworkLocal Area Network

SAN SAN 
ApplicationApplication

LAN LAN 
ClientClient

NAS NAS 
ServersServers
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Figure 3.1  Storage System for SAN and NAS 
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storage systems, characterized by high bandwidth, dedicated connection and great 

flexibility of space scaling and resource relocation.  

In both SAN and NAS scenarios, the storage system plays an important role in 

the whole picture of networked storage. The storage systems’ performance always 

becomes the key factor to the overall I/O performance. Practically, the storage systems 

are one of the key components of IT infrastructure. Figure 3.1 illustrates the storage 

system’s position in the overall picture of network storage. 

3.1.1  FC-AL Based Storage System 

A storage system is generally a collection of hard disk drives (HDDs) that are 

aggregated and managed by the storage controller in the form of either a compact 

hardware solution or a relatively more software oriented solution. The RAID 

technologies are often employed to improve the whole system’s reliability. 

Upon receiving an I/O command from the host system, the storage controller 

goes through its software and hardware elements to determine which member HDD to 

access. Accesses to member HDDs are done through an interconnection between the 

storage controller and the member HDDs. The interconnection can be either a fabric 

network or a FC-AL loop in the case of Fibre Channel connection. Although the fabric is 

the fundamental element of a Storage Area Network (SAN), it does not bring essential 

benefit for higher performance compared with the FC-AL connection within a storage 

system.  For one example, if a storage system is supposed to have one interface 

connecting to the external fabric network, the bandwidth bottleneck is on that 

connection for the reason that all internal traffics from every attached HDDs must go 

through the single connection. Moreover, putting a fabric switch element in a storage 

system imposes much higher costs than FC-AL.  Therefore, the FC-AL 

interconnections are widely adopted in today’s high-end storage system. 
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The FC-AL based storage system referred to in this thesis means the storage 

system where the interconnection between the storage controller and the attached 

HDDs is based on Fibre Channel Arbitrated Loop.  With FC-AL, the storage system 

may physically easily connect hundreds of HDDs with several interface controllers 

(FC-AL adapter) each connected to a loop. Today’s HDD shipped by most vendor 

supports dual loop connection. This feature is often explored to form a second 

independent redundant I/O path for high fault-tolerance. Figure 3.2 shows a typical 

FC-AL based storage system that have multiple FC-AL adapters where each of the 

Main I/O bus connects to a vertical loop and each of the Redundant I/O bus connects a 
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Figure 3.2 FC-AL Storage System Architecture 
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horizontal loop. The member HDDs are located on those intersection grids of the two 

groups of different dimensional loops so that they can be accessed either by the main 

adapters or by the redundant adapters. Although most adoptions use the second I/O 

path as redundant to the main one, some other vendors activate both I/O paths with 

load balance over them to provide doubled overall bandwidth. 

3.1.2  Storage Controller 

The storage controller is the core of a storage system. It serves every external I/O 

request, and initiates and manages every internal I/O. It is a computer system equipped 

with various intelligent and value-added functional modules in either hardware or 

software forms.  Figure 3.3 shows an example of storage controller internal 

architecture. The storage controller consists of three I/O buses and one system bus 

connecting by a chipset bridge. One target HBA (Host Bus Adapter) is sitting on the 

front bus to receive external I/O request. Multiple initiator HBAs are used and inserted 

Main Memory +

Cache

Main Memory +Main Memory +

CacheCache

ChipsetChipsetChipset

Target HBATarget HBA

To HDDsTo HDDs

To HostTo Host Initiator HBAInitiator HBA

Front BusFront Bus
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Second I/O BusSecond I/O Bus

System BusSystem Bus

Target driverTarget driver

υυProcessorProcessor

Initiator driverInitiator driver

Main Control ModuleMain Control Module

CachingCaching RAID RAID AlgoAlgo

Figure 3.3 Storage Controller Internal Architecture 
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into Main I/O Bus or Second I/O Bus, and each of them connects to a FC-AL loop of 

HDDs. A microprocessor and a large memory module are connected through the 

system bus on the other end. 

A set of software module stacks that handles I/Os is loaded to the microprocessor. 

The software stack typically includes the device drivers for both target HBA and 

initiator HBA. A main control software module governs the overall I/O activity. When 

an external I/O arrives, the target HBA notifies the main control module through the 

target driver. The main control module passes the I/O to the caching module to see if 

the data requested is available in the main memory. If the requested data is found in the 

main memory by the caching module, the I/O is served and data is transferred back to 

the external requestor by the target driver through the target HBA. If the caching 
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Figure 3.4 RAID Controller Internal I/O Process Flow 
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module reports a miss, i.e., the request data are not found in the main memory, the 

request is passed to a RAID algorithm module to determine where to read or write the 

requested data. Depending on different algorithms used, the RAID algorithm module 

processing may result in multiple internal I/O requests accessing multiple attached 

HDDs. These internal I/O requests are scheduled by the main control module and are 

submitted to the initiator diver so that the initiator HBA can deliver them to the 

destination HDDs. After these internal I/O requests are served by the HDDs, the 

requested data are sent back to the controller through the initiator HBA. Figure 3.4 

shows an example of I/O processing flow in RAID controller in further detail. 

3.1.3  Interfacing to the Host Bus Adapter 

The Fibre Channel Host Bus Adapter (HBA) is an important component in a 

storage system for high performance I/O. It provides completed assistance for Fibre 

Channel operation with only minimal involvement of CPU of the host. The system 

involvements are done through the HBA device driver. When an I/O request is issued 

from the system, the HBA device driver is given an I/O request package with complete 

information of the I/O, such as operation type of read or write, the location of the 

destination (LUN+LBA), and the location in the main memory of the data buffer that 

holds the requested data. The device driver then puts the I/O request package in place 

and quickly issues a command through memory mapped control registers to the HBA. 

After that, the device driver rests and the host system is free from the I/O operation 

until the completion is reported, by means of interruption if necessary. The HBA needs 

to use the I/O bus from time to time for DMAing data to or from the System Memory. 

Figure 3.5 illustrates an example of a Fibre Channel HBA operation environment. 
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3.1.4  FC HBA Internal Operation 

The I/O operation path from the storage controller, through the device driver, to 

the HBA that receives an I/O command has been discussed. The more detail  internal 

operation of the HBA is analyzed in this section. Referring to the same diagram of 

Figure 3.5, an FC HBA typically contains a microprocessor that acts as the coordinator 

for I/O operation, a bus control and DMA arbiter that manages the utilization of the 

system I/O bus and performs DMA operation for accessing system memory, a link 

control unit that directly deals with the FC physical link, and a frame control that 

performs the frame management. A pair of FIFOs (First-In-First-Out frame buffer) is 

used to temporarily hold the incoming and outgoing frames.  A set of HBA specific 

commands is defined for the microprocessor to execute functions, such as reset, status 

report, I/O command and others. These commands are designed in compact size with 

only few bytes so that it can be delivered quickly to the HBA through the device driver. 

The HBA retrieves the information of the I/O request through the Bus Control & DMA 
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Figure 3.5 Fibre Channel HBA Operation Model 
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from the system memory and then allocates necessary resource for executing that I/O 

request. A complete set of indexing information is established, such as the frame 

header that contains a reference pointing to the I/O request. Per FCP standard, the 

FCP_CMND frame is then constructed and placed into the outgoing FIFO with 

assistance from the frame control. The link control establishes a connection with the 

target and transfers the command frame to the target from the outgoing FIFO.  

The target retrieves the I/O information from the FCP_CMD frame and executes 

the I/O request. For read, the requested data obtained from the media are sent through a 

sequence of FCP_DATA frames followed by a FCP_RSP indicating the completion 

status. For write, the target allocates the memory buffer to receive the writing data and 

sends FCP_XFER_RDY to the initiator. When initiator receives the FCP_XFER_RDY, 

it looks up the indexing previously established and transfers the data from the data 

buffer referred by the indexing in FCP_DATA frame sequences. Upon successfully 

transmitting all data, the target sends FCP_RSP to report the completion. 

For read, when the initiator HBA receives a FCP_DATA frame, the frame control 

unit reports to the microprocessor. The microprocessor retrieves the data payload from 

the FCP_DATA frame with assistance of the frame control, looks up the indexing to 

get the data buffer location in the system memory and triggers the bus control unit to 

DMA the data to system. The process of retrieving data from frame is referred to as 

de-encapsulation, which may be done with other hardware components to offload the 

microprocessor. For write, the imitator HBA receives FCP_XFER_RDY in the 

incoming FIFO. The frame control unit informs the microprocessor about the reception 

and the microprocessor interprets the information embedded in the frame to get the 

size of the data to be transferred corresponding to this FCP_XFER_RDY and looks up 

the indexing for the data buffer location in the system memory. The bus control and 

 21
 



DMA arbiter is then instructed to receive data from the data buffer, and the frame 

control encapsulates the received data into FCP_DATA frames and places them into 

the outgoing FIFO. The link control proceeds to transmit the frames from the outgoing 

FIFO to the destination.  

For both read and write, when the FCP_RSP is received, the initiator HBA may or 

may not interpret the completion status directly, depending on the different 

implementation. The raw FCP_RSP or the interpreted completions information is sent 

to the designated memory location that the device driver knows and interrupts the 

system for attention. The device driver is activated by the interrupt and performs 

error-free checking based on the completion information. If the I/O request is 

successfully executed, the device driver reports to the requestor and the I/O is 

completed. Otherwise, the device driver may re-issue the I/O request to the HBA for 

retry, depending on different error types. The retry may be conducted several times up 

to a maximum limit. If it still fails, error recovery routine will be triggered and the I/O 

status is reported to the requestor. 

3.2 Performance Limitation of Command Queuing Delay   

3.2.1  External I/O Queue 

As previously discussed, a storage system is designed to provide aggregated 

performance of a set of HDDs. Multiple I/O requests may be concurrently sent to 

different HDDs. The maximum number of I/O requests that the storage system can 

simultaneously process directly affects the aggregated performance.  

When the storage system is used as a virtual disk dive, it may report this maximum 

outstanding request number (queue depth) to a client in the system initialization 

procedure. The client can issue no more than that number of outstanding requests at any 
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given time.  Exceeding that, additional I/Os are placed in a waiting queue (referred to as 

client-site queue) until at least one outstanding request is finished. Due to the fact that 

the maximum outstanding request number is fairly large for a high performance storage 

system, in the case of a single client, the probability of a request waiting in the client-site 

queue is small. However, a storage system is often shared by multiple clients in SANs 

environment. Each client may generate independent workload and cause multiple I/O 

requests concurrently arriving at the storage system. Furthermore, new I/Os may arrive 

continually. A number of I/O requests are thus aggregated in the storage system and 

there is a higher probability that they may exceed the maximum outstanding request 

number. The extra I/O requests must therefore wait and form a storage system site queue 

(refers as storage-site queue).  

In either case of a client-site queue or storage-site queue, the I/O commands are 

delayed and considered to be inefficient. If the I/O commands are delivered earlier, the 

HDD could perform optimal scheduling as studied in [31] and [32]. On the other hand, 

in a multiple HDDs system, those outstanding I/Os may access a small set of member 

HDDs only. The other HDDs may stay inactive although I/Os waiting in the queue may 

need to access them.  It is therefore of interest to explore possible method to deliver 

command earlier. 

3.2.2  Internal I/O Queue 

As discussed earlier, multiple internal I/O requests may be required by the storage 

controller to serve an external I/O.  Multiplied with possible large number of external 

I/Os, a fairly large number of internal I/Os may be submitted to the internal initiator 

HBA’s device driver. Depending on different operating systems, the HBA device driver 

may only be able to handle a limited number of outstanding requests.  For example, the 

windows system can only support up to 255 outstanding requests for one HBA. The rest 
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of the internal I/Os form a waiting queue and these I/O commands are delayed. This is 

another reason to consider if an I/O command could be sent earlier. 

3.2.3  HBA Internal Queue 

The HBA device driver issues an HBA specific I/O command to the attached HBA 

for each internal I/O request. Depending on different implementations, the HBA may 

concurrently execute a limited number of the I/O commands, with any remaining I/O 

commands waiting. After execution, the FCP_CMND frame corresponding to each I/O 

command is placed into the outgoing frame FIFO. It is worthwhile to note that the 

workload may be a mixture of read and write and thus there may be a number of 

FCP_DATA frames ahead of the FCP_CMND frame.   

3.3 Limitation of Fairness Access Algorithm 

3.3.1  FC-AL Operation 

The basic elements of a FC-AL loop are those nodes that are connected in a 

logically unidirectional ring of either fibre optic or copper cable. These nodes in the 

Fibre Channel terminology are called L_Ports.  Each L_Port connects to its proceeding 

neighbor through receiving fibre (RX), and its succeeding neighbor through transmitting 

fibre (TX).  The control messages and frame data are sent to its next neighbor and 

received from its previous node. Some messages will travel along the entire loop and 

come back to the L_Port indicating some specific meaning. Some other messages are 

only for the designated port and the other ports shall retransmit them in time upon 

reception.  Those control messages are called Ordered Sets, including arbitration 

(ARB), idles, open (OPN), close (CLS), buffer-ready (R_RDY) and others.  
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Before an L_Port can send frames to another L_Port, it must arbitrate and win the 

arbitration for accessing the loop. After the L_Port attains the loop access, it transmits 

OPN signal that carries the destination port address and becomes the open port. The 

other port checks the OPN signal and compares the destination address to its own port 

address. When the addresses match, the port absorbs the OPN signal and becomes the 

opened port. A logical point-to-point connection is thus established between the open 

port and the opened port. Frames can then be transferred between the two ports.  Either 

the open or opened port may transmit CLS signals indicating that it desires to close the 

connection. Upon reception of CLS, the other party may continue to transfer the 

remaining frames and transmit the CLS to release the loop when the frame transfer 

completes. The second CLS signal will come to the first port and make the port ready for 

next operation. 

3.3.2  Arbitration Process and Fairness Access Algorithm 

Strictly speaking, a FC-AL loop is not a token ring. There is no token for L_Ports to 

chase for gaining the loop access. Neither is there a central arbitrator that governs the 

winner of the arbitration if multiple ports are simultaneously arbitrating for the access. 

The arbitration is actually done in a distributed manner.  

An L_Port starts its arbitration by continually transmitting ARB(x) signal, whereby 

the x in the parenthesis is the address of the port. If there are no other ports that also 

arbitrate for the access at the same time, the ARB(x) will be retransmitted by all other 

ports and the L_Port (x) will receives its ARB(x) and the arbitration is won.  If another 

port arbitrates the loop at the same time, it compares its own port address with the x 

value of the ARB(x) received. If its port address is smaller than x, the port knows that it 

has higher priority and thus it replaces the ARB(x) with ARB(y) and transmits this 

signal out to the loop. Upon reception of ARB(y), port x stops transmitting ARB(x) but 
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forwards the ARB(y) since y is smaller than x.  The port y will then receive its won 

ARB(y) and win the arbitration at the end.  

From above description, it can be seen that the FC-AL arbitration has priority based 

on the port address that is called AL_PA (Arbitrated Loop Physical Address) in Fibre 

Channel term. The port with the smallest AL_PA among all arbitrating ports always 

wins the arbitration. This may cause problems. Firstly, if the higher priority port 

continuously accesses the loop, other lower priority ports would not have the chance to 

gain access and the starvation happens. Secondly, for a busy loop with large number of 

ports, event though any one port is not likely to arbitrate continuously, multiple higher 

priority ports may take their turns to arbitrate and cause  lower priority port to suffer 

starvation with increasing probability as the port priority decreases.  Thirdly, the pure 

priority arbitration causes uneven performance among the loop ports even in a less busy 

loop, since the probability of one port’s arbitration being postponed by higher priority 

ports increases as the port priority decreases.  Thus the pure priority based arbitration 

has starvation and unfairness problems that must be solved. 

The Fairness Access Algorithm is used in a FC-AL loop to prevent starvation and 

unfairness. An L_Port equipped with the Fairness Access Algorithm is not allowed to 

immediately arbitrate again after it has won the arbitration, unless it discovers that no 

other ports are arbitrating in the same arbitration window. After winning the arbitration, 

the L_Port starts sending ARB(F0) signal between frames and monitors its return to 

test if other ports on the loop desire to gain access to the loop. The ARB(F0) has the 

lowest priority (F0) among all possible port addresses and thus other L_Ports are given 

chances to replace the ARB(F0) with their own ARB(X). The moment when the first 

L_Port receives the ARB(F0) is subsequently delayed if other L_Ports are arbitrating. 

As long as the ARB(F0) is yet to receive, the winner L_Port is in the same arbitration 
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window and shall continue transmitting the ARB(F0) signal. If there is no more 

arbitrating, the first L_Port will eventually receive the ARB(F0). Once the L_Port 

receives the ARB(F0), it then transmits an IDLE signal that indicates the end of the 

arbitration window and can begin another round of arbitration.  

3.3.3  Command Delay by Fairness Access Algorithm 

As mentioned earlier, an FC-AL based storage system may consist of a single 

controller and multiple HDDs on a FC-AL loop. The controller acts as an I/O initiator 

and the HDDs act as the targets (or the responder).  If all ports on the loop, including 

the controller, are accorded the Fairness Access Algorithm, the controller may not be 

able to obtain sufficient loop bandwidth to achieve a high level of parallelism among 

the HDDs and to optimize the overall performance. For example, when the storage 
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Figure 3.7 Command Delay Timing Model 

controller transmits read commands to all HDDs, the HDDs would require some time 

to prepare the requested data before transmitting data back to the storage controller. 

Once a disk drive finishes with data transferring, it remains inactive unless it is given 

another command. If the storage controller follows the fairness algorithm, it will have 

to wait for all disk drives with pending data before being able to access the loop to 

send new commands, as shown in Figure 3.6. 

The delay of sending I/O commands due to the Fairness Access Algorithm may be 

very long in some situations. As shown in Figure 3.7, after winning the arbitration and 

gaining access to the loop, the controller needs to wait for a new access window to 

send next commands. It is assumed that there are n hard disk drives that are pending 

for sending read data to the controller and the reading data consists of Ni number of 

2KB FC frames for each HDD .  Collectively, the FC-AL overhead for HDDi i to 

arbitrate and other overhead is assumed to be Toverheadi , and the time for sending a 2K 

frame over a FC-AL is Tframe. The total waiting time for the controller to send a new 

command can be calculated as:  

 
 --- Equation (1) T = ∑ (Toverheadi + Tframe x   N i )

i=0

n

T = ∑ (Toverheadi + Tframe x   N i )
i=0

n

 

From Equation (1), it can be seen that delay time due to the fairness access is 

proportion to the I/O size and the number of the HDDs pending for transferring the 
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request data. For 1 G FC-AL loop, the time for transmitting a 2KB size frame is about 

20 microseconds (2K/100MBps). The overhead for a HDD to send the first frame may 

be assumed to be 10 microseconds. For 64KB requests, the total delays may go up to 1 

millisecond, when number of HDDs is 16.  

3.4 Command-First Algorithm 

In view of all above-mentioned potential delays of sending I/O commands, this 

thesis proposes a new schedule for FC-AL based storage system, which enables the 

storage system controller to send I/O commands to storage units earlier. Firstly this 

thesis proposes a Command-First frame buffer management scheme that gives a 

command frame higher priority than data. Secondly, this thesis proposes to give the 

controller privilege to arbitrate the loop immediately after an I/O command frame is 

encountered, regardless of the rule of the Fairness Access Algorithm that prevents the 

controller to arbitrate again within a same arbitration window. Finally, this thesis 

proposes to send I/O commands preemptively. These measures are collectively named 

as the Command-First Algorithm  
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3.4.1  Command-First FIFO 

In the first place, it is proposed to aggressively deliver the I/O commands in system 

level queue and give the command higher priority than data. The I/O commands shall 

be transferred to the destination HDD as early as possible.  The HBA device driver 

shall be designed with capability of handling as many I/O commands as possible. The 

HBA shall give higher priority to the I/O command processing than that of the I/O data.  

One immediate consideration for giving the I/O command higher priority is to 

aggressively place the FCP_CMND frame in front of FCP_DATA frame in outgoing 

“FIFO” buffer of the HBA, or to have a separate higher priority Command FIFO to 

hold FCP_CMND frames. For the later implementation, the HBA checks the 

Command FIFO first when it proceeds to transfer frame. Figure 3.8 illustrates the two 

possible options. 

3.4.2  Command-First Arbitration 

Secondly, the proposed Command-First Algorithm allows the storage controller to 

arbitrate immediately after the command is read to send. The controller checks the type 

of the frame to send. If the frame is a command, the controller switches to unfair 

access mode, and starts arbitration. Otherwise, the controller remains fairness 

accessing. The arbitrated loop physical address (AL_PA) of the storage controller is set 

to lowest value so that the controller has the highest priority of wining the arbitration, 

in the case of other HDDs also arbitrate the loop.  

The Command-First Algorithm differs to the pure unfair access. The FC standard 

does not compulsorily regulate that all loop device must implement the Fairness 

Access Algorithm. The Fairness Access Algorithm is optional for loop devices. The 

standard actually recommends that the storage controller to be implemented with 

unfair. However, with pure unfair access implementation, the storage controller will 
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always have higher priority to send frames, regardless of the different frame types of 

data or command. Thus the write performance will tend to be superior to the read since 

the writing data are sent by the storage controller. The overall effect is likely to be 

negative. In contrast, the Command-First Algorithm only transfers commands in unfair 

mode and therefore the data transferring is not affected. Because the command frame 

is transmitted in a single frame sequence and the size of the command frame is small, 

the duration of holding the loop is short. Thus the performance penalty of delaying 

other devices access will be very small.  

3.4.3  Preemptive Transferring Command 

Since data transfers are always either sent to or from the storage controller in a 

storage system environment, it is possible for the storage controller to send CLS signal 

with the intention of closing current communication with a particular HDD. When the 

controller is opened for the communication, such as the I/O read in half duplex mode, 

the hard disk drive might continue sending frames to complete the data-transferring 

even after it has received the CLS signal from the storage controller. The performance 

gains therefore may be only marginal for the case that the controller is in opened state. 

However, it would be significant if the storage controller were in open state (the state 

of a port that has sent OPN signal). In unfair mode, an L_Port that owns the loop has 

the privilege of sending OPN signal to another port without arbitration, after sending 

CLS to close current communication. 
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3.5 Summary 

The FC-AL based storage system architecture is discussed in this chapter. The I/O 

operation from the storage controller to the initiator HBA is described in detail. Then 

Command-First Algorithm has been proposed with three different levels of 

Command-First schedule. The Command-First FIFO is to place the command ahead of 

data so that the command can be sent earlier. The Command-First Arbitration is to 

force the storage controller to operate in unfair mode for command frame transferring. 

The preemptive command transferring is to further enforce the storage controller to 

send the command. 
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Chapter 4  

SANSim and Network Storage System 

Simulation Modeling 

4.1 Introduction 

The network storage system simulation model is a part of the SANSim developed 

in Data Storage Institute. The related publication can be seen in [2],[3] and [4]. The 

overall structure of the SANSim simulator is briefly introduced at the beginning of this 

chapter and then the detail implementation of the FC-AL storage system is presented.   

4.2 SANSim Overview 

SANSim is an event-driven simulation tool for SAN that includes four main 

modules: an I/O workload module, a host module, a storage network module, and a 

storage system module, as shown in Figure 4.1.  

The I/O workload module generates I/O request streams according to the workload 

distribution characteristics and sends them to the host modules. The host module 

encapsulates the I/O workload to the SCSI commands and sends them to the Host Bus 

Adaptor (HBA) sub-modules. The storage network module simulates the network 

connectivity, topology and communication mechanism. The FC network module 

includes three sub-modules: an FC controller module, an FC switch module and an FC 

communication module. The storage module maps I/O data to the storage devices.   
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SANSim is developed in pure standard C. It has been compiled successfully both 

in Windows and Linux platform. The simulator reads configuration parameters from a 

user specified input file to establish the simulative SAN configuration, plots 

measurement data, and stores the results in an output file after the simulation is 

completed. The simulation duration and the warm-up period can be specified in the 

input file as well, to control and eliminate the transient bias during the simulation. The 

configuration parameters for each of the four modules are arranged orderly in the input 

file. Some other constants are hard-coded in the source code. 
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The key function of the I/O workload module is to generate I/O request streams 
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Figure 4.1 SANSim Internal Structure 
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An I/O request is determined through five dimensions: the requested pattern, the 

size distribution, the repeatability, the location distribution and the I/O operations. The 

workload module is able to generate several basic different arrival patterns such as 

Poisson arrivals, deterministic time intervals arrival, normal distribution arrivals and so 

on. It can also generate arrival time to describe the situation where the requests arrive 

in different rates following different patterns and combinations. Another capability of 

the workload module is to generate repeatable requests. This scenario is used to define 

a workload in which some files are more popular than others and consequently 

accessed more frequently.   

4.2.2  Host Module 

The host module includes a device driver, a SCSI layer, a system bus, as well as 

DMA module. The main function of the host module is to encapsulate the I/O 

workload into the SCSI commands and sends them to the Host HBA sub-modules.  

The host modules schedule the I/O requests generated by the workload model, 

based on various schedule policies. These I/O requests are traced in a circular queue 

and maintained as outstanding requests. The schedule policy and the number of 

allowable outstanding requests are configurable during the simulation. When the 

outstanding requests exceed the maximum allowable number, new arrived I/O requests 

wait in the device specific queues. These waiting I/O requests may be combined 

together to form a larger IO access. Performance parameters such as the access time of 

each request are collected and the statistical results are printed to a file at the end of the 

simulation.  

The host modules maintain a separate queue for each storage device. The I/O 

requests accessing a particular device will be placed in the corresponding queue. These 

I/O requests in the queue are marked as either “Waiting” or “Outstanding”. The 
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outstanding requests refer to the I/O request having been issued to the storage device. 

The waiting requests are those requests that have not been scheduled. The maximum 

number of outstanding requests depends on the maximum number of the concurrent 

I/O requests supported by the storage device.  

The host module supports a multiple-host configuration. Each host can have a 

separate I/O workload module to generate I/O independent streams. There is a specific 

mechanism to identify the I/O requests coming from different hosts.  The storage 

device being accessed respond to corresponding hosts through an identifying bit 

implemented in the I/O requests data structure.   

4.2.3  FC Network Module 

The key function of the FC network module is to simulate the FC connectivity, 

topology and communication protocol. The FC network module includes three 

sub-modules: the FC controller module, the FC switch module and the FC port & 

communication  module, as shown in Figure 4.2. The FC controller module simulates 

the FC controller behaviors of generation  FC command or data frames. The FC 

switch module models all the FC ports, switch architecture, and as well as the routing 

and flow control. The FC port & communication module transfers FC frames between 

the FC ports.  

 36
 



4.2.3.1 FC Controller Module 

The FC controller module models both initiator and target modes of the FC HBA. 

The module includes three sub-modules: a bus interface, an FCP engine and a FC port. 

The bus interface sub-module handles the communication between the device driver 

and the controller such as DMA and interruption. The FCP engine has the 

responsibility of constructing different FC frames corresponding to each sequence of 
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FCP exchange. The FC port is responsible for delivering an FC frame to the 

destination port on behalf of the communication module.  

4.2.3.2 FC Switch Module  

SANSim’s FC switch module has two sub modules: FC port, and FC switch core. 

FC port supports F_Ports/FL_Ports and E_Ports. F_Ports/FL_Ports are for Host-Switch 

and Device-Switch connections, and E_Ports are for Switch-Switch interconnection. 

The FC_Port’s address_ID is unique and is well confined to the FC-SW-2 standard. FC 

switch core is the switch’s control center for frames routing and forwarding. It contains 

routing and internal cross-bar. If the destination port of requested FC frames is busy, 

the incoming frames are held in the incoming buffer until they are successfully routed. 

SANSim uses Dijkstra’s algorithm to compute the shortest routing path. The routing 

table remains constant unless the network connectivity is changed during the 

simulation. When the network configuration is changed, the switch module 

re-computes the shortest path.  

4.2.3.3 FC Port & Communication Module  

The FC port & communication module includes a frame buffer management and 

FC connection sub modules. The frame buffer management sub module handles all 

management of incoming and outgoing frame buffers. The FC connection sub module 

establishes a FC connection between two FC ports for frame transferring. The FC port 

& communication module supports FC-AL topology that will described in detailed in 

the following sections. 

4.2.4  Storage Module  

The main function of the storage module is to map I/O data to the storage devices.  

Storage modules include modeling of the RAID array, cache management, disk drive, 
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and RAM disk. In the event of disk failure, in a RAID system, the degraded mode and 

rebuild behavior can also be modeled. 

The storage module can be configured with various network interfaces through an 

interface controller. The I/O requests is extracted from the received frame by the 

interface controller and passed to the storage controller for accessing the attached 

storage devices. The RAID controller converts a logical access to multiple device 

accesses based on the RAID algorithm.  The RAID can be configured to support 

multiple dimension RAID arrays. 

4.3 Simulation Modeling of FC-AL Storage System 

The simulation model is based on discrete-event driven simulation technique and 

written in C language.  With the discrete-event driven technique [37], a data structure 

that holds event’s timestamp, type as well as other information is used to indicate a 

particular event happening at certain times. A double precision variable is used to 

record a high-resolution timestamp in the simulation model so that the FC transmission 

can be accurately modeled up to nanosecond level. An object or system being 

simulated is represented by a set of data structures that holds the current status of the 

system, and a series of actions (or functions) that will be triggered, in accordance with 

the current status, by various types of event at the event occurring time. An action 

being triggered by an event may change the system’s status or generate a new future 

event and cause the evolution of the system. 

In the remainder of this section, the implementation of FC-AL operation model is 

first discussed in detail, and then the HBA model is introduced. A system level model 

is necessary for conducting I/O performance simulation. Since this thesis is focusing 

on the FC-AL interconnection, other system components are described in rather 
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simplified and abstracted way. This thesis puts more attention to the integration of the 

FC-AL and HBA model with the system model. 

4.3.1  FC-AL Module 

Although the FC-AL appears as a separate layer in FC standard, this thesis 

includes related FC-0 to FC-2 functions into the FC-AL model with the aim of 

providing a completed model that can be used directly by the HBA model that enables 

the FCP operation. Also, since this thesis is focusing on the performance of a steady 

state system, the initialization and error recovery process of the FC-AL operation are 

omitted from the model. 

For the purpose of description, this thesis views the FC-AL model as consisting of 

four basic units: (1) the signal transmission that simulates the ordered set or frame 

transmission delay over various types of physical link, (2) the loop port state machine 

that adopts a simplified version of loop port state machine defined in the FC-AL 

standard, which omits the initialization and error recovery process, (3) the FC-2 
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Figure 4.3 FC-AL Simulation Model Structure 
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signaling and framing that governs the frame transmission, and (4) the alternative BB 

credit that handles the flow control. The relationships between them are illustrated in 

Figure 4.3. This thesis discusses the implementation detail of each in following 

subsections. 

4.3.1.1 Signal Transmission 

The minimum data unit transmitted in FC is the transmission word with a size of 

four bytes. Some special transmission words are used as  control signals, named by 

Ordered Set in FC terms, such as IDLE, ARB, OPN, R_RDY, SOF, EOF and others. 

The SOF and EOF are used to mark the beginning and the ending of a frame. The size 

of a frame including the payload must be transmission word aligned, i.e., it is four-byte 

dividable. If the user data to be packitized into a frame is not transmission word 

aligned, it must be padded-up with dummy data. Based on this characteristic, the 

simulation model is developed up to transmission word resolution, since the finer level 

of transmission modeling does not give higher accuracy. 

In the first place, the signal transmission model unit takes charge of modeling the 

delay of Ordered Set (OS) and frame delivery from one port to its next. A transmission 

word is transmitted as 40 serial bits after the 8bit/10bit coding. With a given parameter 

of clock rate, the time to complete the transmission is determined. For an example, for 

1 G FC, the clock rate is 1.0625 GHz, and thus the transmission time for a single 

transmission word is about 37.65 nanoseconds (40 divided by 1.0625 G). After the bit 

stream is transmitted, it takes time to travel along the fibre to reach the next port. For 

fibre optic cable, this propagation delay is about 5 nanoseconds per meter. The 

distance between the ports is given in the configuration parameters, and thus the 

propagation delay is determined. Finally, when a port retransmits a transmission word, 

an additional delay will be imposed due to the elastic buffering and it is often called 
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per-port delay. The FC standard specifies that the per-port delay must not greater than 

six transmission-words transmission time. This delay time actually gives the port a 

time window to analyze the signal it received and may vary from port to port. In this 

simulation model, the delay is set to be fixed of about 240 nanoseconds for 1 G media. 

To sum up, the delay time of a transmission word from one port to the other can be 

calculated at the beginning with the given configuration parameters.  

EvEv__SendOSSendOS(A,t0)(A,t0)

Generate  events: Generate  events: 

EvEv_CMPL__CMPL_TxTx(A, t1)(A, t1)

EvEv_OS_Arrival(B,t2) _OS_Arrival(B,t2) 

Port APort A Port BPort B

Event SchedulerEvent SchedulerEvent SchedulerEvent Scheduler

EvEv_CMPL(A, t1)_CMPL(A, t1)
EvEv_OS_Arrival(B,t2)_OS_Arrival(B,t2)

t1=  t0 + port_delayt1=  t0 + port_delay

t2 = t1 + t2 = t1 + propagpropag_delay_delay

 

Figure 4.4 Signal Transmission Model 

Based on the timing model described above, a discrete event module is designed 

as illustrated in Figure 4.4. When simulation time reaches t0, the Ev_SendOS(A,t0) 

occurs and the Port A is triggered to call the transmission model to generate 

Ev_CMP_Tx(A,t1) and Ev_OS_Arrival(B,t2) events, which indicates when the data 

transmission is completed and when the Port B receives the transmitted OS. These two 

events will be scheduled by the event scheduler according to their time of t1 and t2, 

and are fed to the corresponding port.   

The above model without optimization would have serious problem regarding the 

computing efficiency. The computing power required for the discrete event simulation 

is directly proportion to the number of events being processed. In above model, every 

transmission of one word would require at least three events. For a 2 KB frame, it 

would require 1536 events (2048 Bytes / 4 Bytes * 3). Moreover, there are always 
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transmission words traveling on the loop to maintain the FC link. For every one second, 

it would require about 26.6 million transmissions (1.0625 x 109 / 40), or about 80 

million events. This is too time-consuming and computing expensive. A method is 

used to solve this problem by implementing “edge-change” simulation, to greatly 

reduce the number of transaction without losing accuracy.  

With the “edge-change” method, every port on the loop records the type and the 

time of the word being transmitted, marked as CTW (current transmitting word) and 

CTT(current transmitting time). When a new transmission is issued, the type of new 

transmission word is checked with the CTW type. If they are same, the transmission is 

discarded but the CTT is updated. Otherwise, both CTW and CTT are updated and the 

transmission word is delivered to the next port.  For a frame, the model does not 

distinguish the transmission words between the SOF and EOF and consider from SOF 

to EOF an unchanged signal. Thus, a frame transmission requires only two 

“edge-changes”, one from CFW (current fill words) to SOF, the other is EOF to CFW.  

With this method, no other transmission words other than the OSes are required.  

Additionally, since the state transition of the Loop Port State Machine (LPSM) are 

CRWCRW
CRTCRT

CTWCTW
CTTCTT

CRW: current receiving word
CRT: time of start receiving CRW
CTW: current transmitting word
CTT: time of start xmiting CTW
CFW: current fill word

Pseudo Process to Pseudo Process to 
trigger OStrigger OS

L_PortL_PortL_Port

CFWCFW

UpdateUpdate UpdateUpdate

CRWCRW
CRTCRT

CTWCTW
CTTCTT

CRW: current receiving word
CRT: time of start receiving CRW
CTW: current transmitting word
CTT: time of start xmiting CTW
CFW: current fill word

Pseudo Process to Pseudo Process to 
trigger OStrigger OS

L_PortL_PortL_Port

CFWCFW

UpdateUpdate UpdateUpdate

       

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

Frame dataFrame dataSOFSOF EOFEOF

OS1OS1 OS2OS2

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

Frame dataFrame dataSOFSOF EOFEOF

OS1OS1 OS2OS2

 

Figure 4.5 “Edge-Change” Simulation Techniques 

 43
 



often driven by the receiving OSes, it is also critical to maintain a pair of CRW 

(current receiving word) and CRT(current receiving time).  A pseudo process is 

designed to generate the receiving signal based on the CRW and CRT when it is 

needed. The “Edge-Change” technique discussed is illustrated in Figure 4.5. 

The above discussion provides evidence that high accuracy may be achieved with 

limited computing power by using the proper modeling method. Other techniques such 

as clock alignment handling method are omitted from this discussion.   

4.3.1.2 Loop Port State Machine 

The Loop Port State Machine (LPSM) defines the behavior of an L_Port, and is 

used to gain access to other L_Ports.  Since the model is focusing on the steady state 

performance, for the purpose of simplicity, only a sub set of the state transition logic is 

modeled. The states associated with the initialization and error recovery process, 

namely the Initializing, Old-Port and Open-Init states, are omitted from the model. As 

show in Figure 4.6, the LPSM module models the remaining eight possible states that 

an L_Port might possibly transit to and from during normal steady state operation.  

With no exception from the basic method of discrete-event driven modeling, the 

model defines a set of necessary control and status variables in the fields of the L_Port 

data structure to hold the current status of the L_Port with regard to the LPSM 

operation. In addition to that, a set of functions is developed to process input events 

based on the current status and the given event type, according to the LPSM logic 

defined in the standard. Corresponding to the real world’s input of the LPSM, two 

basic types of events are defined to trigger the state transitions: the loop port request 

arrival events and the ordered set arrival events. The loop port requests are issued by 

the FC-2 signaling and framing model to command the L_Port to perform certain 
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activity, while the OS arrival events are fed by the signal transmission module upon 

reception of an OS.  

It is worth mentioning that the Fairness Access Algorithm is naturally included in 

the LPSM logic. As specified in the standard, each fairness-access L_Port uses several 

history variables and controls to determine the start and the end of a fairness access 

window. Within a same fairness access window, the LPSM of an L_Port will not 

transit to Arbitrating state again until all conditions are satisfied (corresponding to the 

fairness access window’s being reset). The comprehensive description of the LPSM 

model is omitted in this thesis. Rather, a simple example of three L_Ports (labeled as 

port A, port B and port C) configuration is used to illustrate the LPSM operation in the 

remainder of this subsection.  

Assume that all three ports start from Monitoring state and a loop port request of 

Req(arb_own) is issued to port A. Since port A has not arbitrated before, the Fairness 

Access Algorithm does not prevent port A to transit from Monitoring to Arbitrating 
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Figure 4.6 Loop Port State Machine 
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state. Port A then keeps transmitting the ARB(A) when it is in Arbitrating state. Since 

port B and C are in the Monitoring state, they retransmit the ARB(A) signal. Port A 

hence receives its own ARB(A), and transits to Arbitration_Won state. The FC-2 

signaling and framing model is notified of the arbitration winning and Req(OPN) is 

issued for frame transferring. An OPN with parameter of destination port address, say 

the address of port C, is transmitted by port A and the port transits to Open state. While 

port A is in Open state, it will not retransmit any OS received from its receive fibre 

over to its transmit fibre. The CFW or other control OSes are used to fill the gap of 

frame transmission. The control of the frame transmission is then passed to the FC-2 

signaling and framing model to determine when is the proper time to send frames. On 

the other hand, port B retransmits the OPN signal and remains in Monitoring state, 

while port C recognizes its address’s match with the destination address carried by the 

OPN signal and transits to Opened state from Monitoring. Similar to port A in Open 

state, port C does not retransmit OS received from receive fibre over to transmit fibre 

and the control is passed to FC-2 signaling and framing model. Thus, the 

communication channel is established between port A and port C. If the 

communication is in full duplex mode, which is determined by the OPN signal, port C 

may send frames to port A while it receives frames. After all frames are transferred or 

due to other reasons, either the Open port (A) or the Opened port (C) may receive loop 

port request of REQ(Close). The LPSM then triggers the port to transmit CLS signal 

and transit to Transmitted Close state upon completion of sending the CLS. When a 

port is in Transmitted Close state, it is not allowed to transmit frames again although it 

may continue to receive frames. Port B forwards the CLS to the other party of the 

communication, being the Open port or the Opened port. Upon reception of this CLS 

signal, the port transits to Received Close state. While in the Received Close state, the 
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port may continue to send frames until all frames are transmitted or up to the 

buffer-credit’s limit. It is noted that the opposite port does not transmit any more 

buffer-credits after it is in Transmitted Close state. The Received Close port then 

transmits CLS and transits back to Monitoring state and the Transmitted Close port 

consequently follows when it receives the CLS if there is no arbitration request 

pending. Otherwise, it transits to Arbitrating state directly to perform the arbitration.  

Finally, the Transfer state is discussed to mark the end of this example. It is 

assumed that port A has an additional task to send a frame to port B and its 

communication with port C remains unchanged as in previous description. Upon 

completion of the task with port C, port A receives REQ(Transfer) from FC-2 

signaling and framing model and thus it transits to Transfer state after the CLS is sent. 

Port A, in Transfer state, will eventually receive CLS signal from port C and the FC-2 

signaling and framing model is informed. A REQ(OPN) is then issued since it has a 

remaining task to deal with port B, other than a REQ(MON) is issued which causes 

transition from Transfer to Monitoring. As the REQ(OPN) is received, port A sends 

OPN with destination address of port B and transits to Open state. And thus, the 

arbitration is saved for the second task. It is noted that the Transfer state is only 

available in the unfair access mode. 

4.3.1.3 FC-2 Signaling and Framing 

The FC-2 signaling and framing module take over the control of an L_Port for 

frame transferring after the communication channel has been established between the 

Open and Opened port pair. It is assumed that the outgoing frames are constructed 

on-the-fly by other functions of the HBA model and they are placed in the outgoing 

frame buffer and ready for transferring. It is further assumed that the conditional 

checking and other computing overhead associated with the FC-2 Signaling and 
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Framing are sufficiently small and negligible. The HBA overheads such as command 

execution are defined separately in the HBA model unit. 

Since the frames can only be sent in Open state, or possibly in Opened or 

Received Close states for full duplex cases, or Received Close state transited from 

Open state for half duplex, three different functions are developed to simulate the 

control behavior.  Nevertheless, the three functions have similar control logic. They 

must determine if there are waiting frames in the outgoing frame buffer that are 

heading to the connected port, if the six ordered-sets frame gap is satisfied, if the credit 

is available, and other conditions before sending a frame. If it is ready to send a frame, 

the control instructs the signal transmission unit to send the SOF signal and then 

determines when to send EOF signal based on the frame size and the processes shall 

not send any other Signal during the frame transmission. In between the frame, they 

must also determine when to send exactly one R_RDY for a newly available incoming 

frame buffer slot and separate the consecutive two R_RDYs signal with at least two 

CFWs. When there is no more frame to send, the control shall issue loop port request 

of REQ(Close) to the LPSM for closing current connection. From the above 

description, it can be seen that the control actions are dependent on the complex 

combination of conditions and the conditions are change rapidly as the simulation 

progresses. To increase the efficiency, the control function is developed as a virtual 

process, which may be activated from sleep state by certain events, e.g. a frame is 

newly en-queued to the outgoing frame buffer, or a received frame is de-queued from 

the incoming frame buffer to make the buffer slot available; or transit from active to 

sleep state when frame sending conditions are unforeseeable.  
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4.3.1.4 Alternative Buffer-to-Buffer Flow Control 

The alternative buffer-to-buffer is used on a FC-AL loop to ensure that the source 

port does not send frames more than the number of available frame buffer slots that the 

destination port has. The alternative buffer-to-buffer flow control differs to the 

standard buffer-to-buffer flow control. With standard buffer-to-buffer flow control in 

point-to-point or Fabric topology, the two communication parties establish BB_Credit 

over each other after initialization login process. The partnership between the 

communication pair in this case remains fairly static at “one-to-one”. It is therefore 

safe for the standard buffer-to-buffer flow control to make use of BB_Credit to check 

if the port is in credit for sending frame. When a frame is sent, the BB_Credit 

decrements by one and when an R_RDY is received, the BB_Credit increments by one. 

As long as the BB_Credit is greater than zero, the frame can be safely sent. In contrast, 

the BB_Creidt is not directly applicable to a FC-AL loop. An L_Port may be opened 

by various other L_Ports over time and the BB_Credit can no longer reflect the latest 

available buffer space of the destination port that has just been opened by another 

L_Port.   

Differing to the standard BB Credit, FC-AL uses an “alternative” buffer-to-buffer 

flow control. During loop initialization, each L_Port advertises its own LoginBBCredit 

that guarantees the number of buffer slots available, and records other ports’ 

LoginBBCredit. After that, when an L_Port opens or is opened for communication, it 

looks up its record for the opposite port’s LoginBBCredit. If the LoginBBCredit is 

greater than zero, the port can start sending frames up to that number at the beginning 

phase. During this phase, the R_RDYs received are discarded up to the equal number 

of LoginBBCredit to make the credit balance. When more R_RDYs are received, the 

port records the additional credits. After the LoginBBCredit is fully used and equal 
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number of R_RDY has been discarded, the second phase begins.  By then, the port 

maintains the credit in the way similar to the standard buffer-to-buffer flow control. 

OK to OK to 
Send Send 

FrameFrame

PreCreditUsageCountPreCreditUsageCount := := 
PreCreditUsageCountPreCreditUsageCount +1+1

PreCreditUsageCountPreCreditUsageCount
== == LoginBBCreditLoginBBCredit

Frame SentFrame Sent

Not OK Not OK 
to Send to Send 
FrameFrame

BBCreditCountBBCreditCount:= := 
BBCreditCountBBCreditCount--11

Not OKNot OK
to Send to Send 
FrameFrame

BBCreditCountBBCreditCount:= := 
BBCreditCountBBCreditCount+1+1

BBCreditCountBBCreditCount
== == LoginBBCreditLoginBBCredit

OK to OK to 
Send Send 

FrameFrame

Frame SentFrame Sent

RdyDiscRdyDisc==0 ==0 

RdyDiscRdyDisc:= := 
RdyDiscRdyDisc--11

NoNo

YesYes

RdyDiscRdyDisc==0 ==0 

BBCreditCountBBCreditCount:= := 
BBCreditCountBBCreditCount--11

RdyDiscRdyDisc:= := 
RdyDiscRdyDisc--11

NoNo

YesYes

YesYesNoNo

ConnectionConnection
EstablishedEstablished

LoginBBCreditLoginBBCredit
==0==0

BBCreditCountBBCreditCount:=:=LoginBBCreditLoginBBCredit;;
PreCreditUsageCountPreCreditUsageCount=0;=0;

RdyDiscRdyDisc:=:=LoginBBCreditLoginBBCredit;;

R_RDYR_RDY R_RDYR_RDY

R_RDYR_RDY

R_RDYR_RDY

YesYes

NoNo

YesYes
NoNo

OK to OK to 
Send Send 

FrameFrame

PreCreditUsageCountPreCreditUsageCount := := 
PreCreditUsageCountPreCreditUsageCount +1+1

PreCreditUsageCountPreCreditUsageCount
== == LoginBBCreditLoginBBCredit

PreCreditUsageCountPreCreditUsageCount
== == LoginBBCreditLoginBBCredit

Frame SentFrame Sent

Not OK Not OK 
to Send to Send 
FrameFrame

BBCreditCountBBCreditCount:= := 
BBCreditCountBBCreditCount--11

Not OKNot OK
to Send to Send 
FrameFrame

BBCreditCountBBCreditCount:= := 
BBCreditCountBBCreditCount+1+1

BBCreditCountBBCreditCount
== == LoginBBCreditLoginBBCredit

BBCreditCountBBCreditCount
== == LoginBBCreditLoginBBCredit

OK to OK to 
Send Send 

FrameFrame

Frame SentFrame Sent

RdyDiscRdyDisc==0 ==0 RdyDiscRdyDisc==0 ==0 

RdyDiscRdyDisc:= := 
RdyDiscRdyDisc--11

NoNo

YesYes

RdyDiscRdyDisc==0 ==0 RdyDiscRdyDisc==0 ==0 

BBCreditCountBBCreditCount:= := 
BBCreditCountBBCreditCount--11

RdyDiscRdyDisc:= := 
RdyDiscRdyDisc--11

NoNo

YesYes

YesYesNoNo

ConnectionConnection
EstablishedEstablished
ConnectionConnection
EstablishedEstablished

LoginBBCreditLoginBBCredit
==0==0

LoginBBCreditLoginBBCredit
==0==0

BBCreditCountBBCreditCount:=:=LoginBBCreditLoginBBCredit;;
PreCreditUsageCountPreCreditUsageCount=0;=0;

RdyDiscRdyDisc:=:=LoginBBCreditLoginBBCredit;;

R_RDYR_RDY R_RDYR_RDY

R_RDYR_RDY

R_RDYR_RDY

YesYes

NoNo

YesYes
NoNo

Figure 4.7 Alternative Buffer-To-Buffer Flow Control 

The Alternative Buffer-to-Buffer Flow Control logic is implemented as in Figure 

4.7.  Two types of event are used in the diagram, the “R_RDY” indicating the event 

that a R_RDY is received and the “Frame Sent” indicating the event that a frame has 

just been sent. The control could be in either “OK to Send Frame” or “Not OK to Send 

Frame” states and transits from left-hand side of the beginning phase to the right hand 

side of the continue phase. Three control variables are initialized when a 

communication channel is established: the BBCreditCount is assigned with the 

LoginBBCredit; the PreCreditUsedCount that is used to count the number 

LoginBBCredit that has been used is set to zero; and the RdyDisc that indicates the 

remaining number of R_RDY to be discarded is assigned with the LoginBBCredit. 

From then on, the control reacts to the event for changing the value of those control 

variables or transits to different states. 
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Figure 4.8 State Transition Delay for Alternative BB Credit 

To guarantee a non-zero LoginBBCredit number of available space in its incoming 

frame buffer, an L_Port may need to delay some of its LPSM state transition.  If the 

L_Port is the Open port and has transited to Transmitted Close state after sending CLS, 

it shall make sure it has enough free space in the buffer before it transits to Monitoring 

or Arbitrating state upon receiving CLS from the opposite port. If the free buffer space 

is not sufficient, the port waits until enough frames are processed and removed from 

the incoming frame buffer. Similarly, for an Open port that has transited to Transfer 
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state, it should ensure enough free buffer space before it transits to Open state again or 

to Monitoring state upon receiving CLS.  For an L_Port that is in Received Close 

state, it also needs to ensure the free buffer space before it transmits CLS signal, 

regardless if it is the Open port or the Opened port.  The last scenario is that an 

L_Port in the Opened state wishes to close the communication. The L_Port needs to 

ensure the guaranteed free buffer space as well but it needs to consider the credits that 

have been given to the opposite port for the reason that the opposite port may continue 

transferring frame upon those credits. It may choose to inform the FC-2 signaling and 

framing unit to stop sending R_RDY, otherwise it may never get enough space which 

is being guaranteed for the next communication. Figure 4.8 illustrates the timing 

diagram for the above three different situations.  

4.3.2  FC HBA Module 

The FC HBA module simulates the behavior of the FC host adapter used in a 

storage system, as the FCP Initiator, and the HDD interface, as the FCP Target. For 

simplicity, the FCP Target is assumed to have identical internal structure to the FCP 
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Figure 4.9 FC HBA Model Structure 
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Initiator except the FCP processing engine, as shown in Figure 4.9.  Overall, the HBA 

module consists of several function sets such as bus interface, DMA, FCP engine, 

frame manager and the L_Port model developed in the previous section, corresponding 

to the HBA’s internal basic operation. The signal transmission unit models the 

connection between the FCP Initiator and the FCP Target.  The internal structure of 

the model in FCP Initiator mode and FCP Target mode are described as following. 

4.3.2.1 FCP Operation Protocol 

The FCP protocol maps each SCSI I/O into one FCP I/O Exchange that consists of 

several FC sequences corresponding to each SCSI command and data transferring 

phase. Four types of FCP Information Unit (FCP IU) are defined for SCSI read and write 

transactions, namely FCP_CMND, FCP_DATA, FCP_XFER_RDY and FCP_RSP.  

These FCP IUs are packed together with the directive frame headers into FC frames and 

transferred in sequences. As their names imply, the FCP_CMND carries a SCSI I/O 
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Figure 4.10 FCP I/O Operation Protocol 
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Command; the FCP_DATA is used to transfer data; the FCP_XFER_RDY indicates 

that the target is ready to receive a certain amount of data; and the FCP_RSP reports 

the completion status of the SCSI I/O. The FCP_CMND is issued from an FCP 

Initiator to an FCP Target.  

The FCP protocol for SCSI read or write transaction is illustrated in Figure 4.10. 

As shown in the diagram, both read or write operations can be divided into in three 

phases: the command phase, the data phase and the status phase. During the command 

phase, the FCP Initiator initiates the I/O by sending FCP_CMND in a single frame 

sequence to the FCP target. Upon reception of FCP_CMND, the FCP Target prepares 

the requested data for read, or allocates data buffer to receive requested data for write.  

After the read data, or the data buffer for write is ready, the data phase starts. For read, 

the FCP target sends the requested data in one or more FCP_DATAs. Depending on 

various implementations, the FCP Target may prepare the requested read data in 

multiple parts, one after the other, and having a time space in between. In such cases, 

the FCP_DATAs may be sent in multiple data sequences. For write, the FCP Target 

sends FCP_XFER_RDY with a parameter of FCP_BURST_LEN specifying the size of 

the writing data buffer. The FCP Initiator then sends one or more FCP_DATAs up to 

the size of FCP_BURST_LEN given in the FCP_XFER_RDY received.  If the write 

I/O size is greater than the FCP_BURST_LEN, additional FCP_XFER_RDYs is 

required after the FCP Initiator fully transmits all FCP_DATA requested by previous 

FCP_XFER_RDY. After all requested data are transferred, the transaction comes to 

the status phase. The FCP Target finally generates the FCP_RSP and sends it to the 

FCP Initiator in a Single Frame Sequence.   
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4.3.2.2 FCP Initiator Mode 

Figure 4.11 shows the functional block diagram of the HBA module in FCP 

Initiator mode. The FCP Main Processor receives HBA commands or other short 

control messages through the Interrupt & Messenger from the Bus Interface. After 

interpretation, the FCP Main Processor recognizes that an I/O command is issued. It 

then takes some time to allocate necessary resource. After completion, it issues a 

DMA_REQ into DMA Queue to fetch the I/O information from the host system (not 

shown in the diagram) through the Bus Interface by the DMA Transfer. The DMA 

Scheduler de-queues one entry from DMA Queue based on various disciplines, such as 

Round Robin, First-Come-First-Serve (FCFS) or other. The DMA Transfer is then 

instructed to DMA the requested I/O information from the host system. The DMA 

Transfer supports bidirectional transfer, i.e., both from and to the host system. Once 

the complete I/O information is retrieved, the FCP Main Processor is informed and the 

Outgoing Frame Construction is commanded to build the FCP_CMND frame that 
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Figure 4.11 FCP Initiator Mode HBA Model Structure 
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carries the SCSI I/O command and places it into the Outgoing Frame FIFO through the 

interface provided by the L_Port model.  

When an FC frame is received in the Incoming Frame FIFO, the Incoming Frame 

Queue Process is activated, if it is in sleep, to process the incoming frames. Once 

activated, the Incoming Frame Queue Process continues processing until the FIFO is 

empty. It analyzes the frame retrieved from the Incoming Frame FIFO through the 

L_Port model interface. The FCP_DATA frames are de-encapsulated and placed in 

DMA Queue for DMA transfer, while frames with other types are directed to the SFT 

Queue to be transferred to the designated host system memory location through Single 

Frame Transfer. Since this thesis is focusing on steady-state modeling, it is assumed 

that only FCP_RSP frames are transferred in this mode. In the case of 

In-Order-Delivery, the FCP_RSP shall be received after all requested data has been 

transferred. The Single Frame Transfer handles the SFT Queue in FCFS order and 

informs the FCP Main Processor upon completion. An interrupt is then issued through 

the Interrupt & Messenger to inform the host system to process the FCP_RSP that 

indicates the completion of an I/O. For FCP write, the FCP_XFER_RDY received is 

passed to the FCP Main Processor for handling data transfer.  DMA requests are 

generated to transfer the writing data from the host system memory. The Outgoing 

Frame Construction then, with assistance of FCP Main Process, encapsulates the data 

fetched by the DMA Transfer into FCP_DATA frames that are placed into the 

Outgoing Frame FIFO. 

4.3.2.3 FCP Target Mode  

The functional block diagram of the HBA module in FCP Target mode is shown in 

Figure 4.12.  It can be seen that the FCP Target Mode HBA module has identical 

internal bocks to the FCP Initiator mode. It is noted that the FC interface may be 
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tightly connected to the disk controller through other means in an actual FC hard disk 

drive. However, since the model supports simulation-time configuration, this means 

that the model can be configured with various parameter when simulation starts, such 

as using zero overhead of command execution to eliminate some non-actual-exist 

function, thus it still be able to model the HDD’s interface function.  

In FCP Target Mode, when FCP_CMND frames are received in the Incoming 

Frame FIFO, the Incoming Frame Queue places them into the SFT Queue to be 

transferred to the HDD controller (not shown in the diagram) through Single Frame 

Transfer. The HDD controller then executes the SCSI command embeded in 

FCP_CMND. If  it is a read, the requested data is read from the media (HDA) and 

placed in read buffer. Otherwise, enough free buffer space is allocated for writing data. 

After completion, the HDD controller informs the FCP Main Processor through the 

Interrupt & Messenger. For read, the FCP Main Processor then issues DMA requests 

and places the data in DMA queue to be handled by the DMA Scheduler to transfer 
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Figure 4.12 FCP Target Mode HBA Model Structure 

 57
 



read data from the read buffer.  The read data is then en-capsulated into FCP_DATA 

frames to be placed into the Outgoing Frame FIFO by the Outgoing Frame 

Construction. When data transfer is completed, an FCP_RSP frame is generated and 

placed into the Outgoing Frame FIFO indicating the I/O has been completed. For 

write, the FCP Main Proessor assists the Outgoing Frame Construciton to build the 

FCP_XFER_RDY frame based on the informaiton received from the HDD controller, 

and places it into the Outgoing Frame FIFO. When FCP_DATA is received, it is  

DMAed to the write buffer that has been allocated. If the last FCP_DATA requested 

by a FCP_XFER_RDY is received but more data is writing, the HDD controller is 

informed to allocate additional write buffer. A new FCP_XFER_RDY is then 

contructed and placed in the Outgoing Frame FIFO. Otherwise, if all data has been 

received, an FCP_RSP is generated  and en-queued to the Outgoing Frame FIFO to 

indicate the completion of the write. 

4.3.3  HBA Device Driver Module 

Before a system model can be established, two more components module, the 

device driver for the Initiator HBA and the hard disk drive firmware function are 

developed to simulate the I/O behavior of the rest of the systems that communicate 

with the HBAs through system bus. After these additional two components are 

presented, all corresponding component modules can then integrated into the system 

model. 
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4.3.3.1 FC HBA Initiator Device Driver 

For simplification, the FC HBA Initiator device driver is modeled as shown in 

Figure 4.13.  I/O requests are submitted to the device driver model through the arrival 

queue. The Arrival Process takes some time to establish all required data structure, 

such as the I/O request package for holding the information of the I/O request. After 

completion, the request package is then en-queued in the I/O Request Information 

Queue that physically holds the I/O information in host system memory. The 

information of the I/O arrival is sent through the Message Passing to the HBA model. 

The HBA retrieves the I/O request package through DMA from the I/O Request Info 

Queue, and processes the I/O request. During data phase, the HBA model may fetch 

data from the Write Buffer, or send data to the Read Buffer. After completion of data 

transfer, the HBA model notifies the HBA device driver through interrupt indicating 
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Figure 4.13 FC HBA Device Driver Model 
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that some I/Os have been completed, and the completion messages are available in the 

Completion Info Queue. The Completion Process examines the I/O completion status 

in the Completion Info Queue and reports the completion. 
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Figure 4.14 HDD Firmware Function Model 

4.3.3.2 Hard Disk Drive Firmware for FC Interface 

The HDD firmware function with regard to the FC target interface is modeled as 

shown in Figure 4.14.  Detailed description of the model is omitted in this thesis. 

4.3.4  Model Integration 

Since this thesis is aiming at the system level I/O performance, it is required to 

integrate the component models into a system model. Figure 4.15 shows an example of 

the system model consisting of a workload Generator to generate certain pattern I/O 

workload, a storage controller hosting an FCP Initiator HBA Device Driver, an FCP 

Initiator HBA model attached to the HBA device driver through the I/O bus, and three 

FCP Targets interfacing to each attached HDD. I/O requests generated by the workload 

generator arrive at the storage controller for execution. The storage controller 

schedules and submits corresponding internal I/O requests to the HBA Device Driver. 
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The FCP Initiator HBA then initiates FCP I/O operations for these internal I/O requests. 

The FCP Target, with support from HDD controller, response to those FCP I/O 

operations.  
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Figure 4.15 System Level Integration 

4.4 Summary 

This chapter has implemented a set of simulation models for FC-AL based storage 

system in the way of “bottom-up” developing approach. The transmission level 

modeling is first introduced, and then the L_Port’s functionalities are simulated. After 

the L_Port model is ready, the FCP HBA model is developed. Lastly, the system level 

model is established and ready for validation. . 
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Chapter 5  

Calibration and Validation 

5.1 Transmission Calibrations 

In order to calibrate the FC-AL model, the Finisar GTX-P1000 Fibre Channel 

Analyzer has been used to track the actual communication between a host system and 

the storage target. As shown in Figure 5.1, the FC analyzer logically sets two monitors 

to watch different directional traffics on the two transmission links. The traffic 

monitors are so designed that they do not interfere with the original communication, in 

the way of “signal coupling”, instead of copy. The transmissions can be recorded and 

stored in memory buffer, up to the pre-defined size.  When the tracking end time is 

reached, the recording is stopped. The analyzer software then generates a time-stamped 

event list according to the raw data and presents them in various formats. A number of 

traces under different I/O workload pattern have been produced using the analyzer. 
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Figure 5.1 Finisar GTX-P1000 Analyzer Logical Configuration 
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These traces are in the format of readable plain text. Each event in the trace starts 

with a nanosecond-resolution time stamp that indicates the beginning time of the 

transmission, followed by a record of multiple same ordered sets or a frame 

transmitted during the past period of time. The time difference between previous event 

and current event with the same port (port 1 or port 2) is also given. If the transmission 

are Ordered Sets, the OS type with parameter such as OPN (x,y), and the OS counts 

are presented. If it is a frame, the FCP type and frame size as well as other frame 

header information are abstracted.  Figure 5.2 shows a segment of a trace in such 

format. 

hhh:mm.ss.ms_us_ns DT/Port Port Count  OS Size  RCtl
000:00:00.998_306_903 0.217 FC_Port 2 1  CLS 4  
000:00:00.998_306_941 0.038 FC_Port 2 1021  Idle 4  
000:00:00.998_307_533 40.208 FC_Port 1 1  CLS 4  
000:00:00.998_307_571 0.038 FC_Port 1 1013  Idle 4  
000:00:00.998_345_378 38.438 FC_Port 2 39  ARB(E1,E1) 4  
000:00:00.998_345_708 38.138 FC_Port 1 41  ARB(E1,E1) 4  
000:00:00.998_346_856 1.478 FC_Port 2 1  OPN(E2,E1) 4  
000:00:00.998_346_894 0.038 FC_Port 2 3  ARB(F0,F0) 4  
000:00:00.998_347_006 0.112 FC_Port 2 1  R_Rdy 4  
000:00:00.998_347_044 0.038 FC_Port 2 2  ARB(F0,F0) 4  
000:00:00.998_347_119 0.075 FC_Port 2 1  R_Rdy 4  
000:00:00.998_347_157 0.038 FC_Port 2 2  ARB(F0,F0) 4  
000:00:00.998_347_232 0.075 FC_Port 2 1  R_Rdy 4  
000:00:00.998_347_261 1.553 FC_Port 1 2  ARB(F0,F0) 4  
000:00:00.998_347_269 0.038 FC_Port 2 2  ARB(F0,F0) 4  
000:00:00.998_347_336 0.075 FC_Port 1 1  R_Rdy 4  
000:00:00.998_347_345 0.075 FC_Port 2 1  R_Rdy 4  
000:00:00.998_347_374 0.038 FC_Port 1 38  ARB(F0,F0) 4  
000:00:00.998_347_382 0.038 FC_Port 2 28  ARB(F0,F0) 4  
000:00:00.998_348_408 1.026 FC_Port 2 5  Idle 4  
000:00:00.998_348_626 0.218 FC_Port 2 1  SOFi3 60  FC4Status
000:00:00.998_348_776 1.402 FC_Port 1 28  Idle 4  
000:00:00.998_349_191 0.565 FC_Port 2 6  Idle 4  
000:00:00.998_349_406 0.215 FC_Port 2 1  CLS 4  
000:00:00.998_349_444 0.038 FC_Port 2 3235  Idle 4  
000:00:00.998_349_848 1.073 FC_Port 1 1  R_Rdy 4  
000:00:00.998_349_886 0.038 FC_Port 1 6  Idle 4  
000:00:00.998_350_104 0.217 FC_Port 1 1  CLS 4  
000:00:00.998_350_141 0.038 FC_Port 1 3186  Idle 4  
000:00:00.998_470_105 119.964 FC_Port 1 39  ARB(E2,E2) 4  
000:00:00.998_471_215 121.771 FC_Port 2 41  ARB(E2,E2) 4  

Figure 5.2 Fibre Channel Analyzer Trace Format 
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During the model-debugging period, these traces are used from time to time to 

calibrate the timing. Various kinds of software event watchers are developed in the 

models and can be turn on during compile-time to produce a simulative event trace.  

Figure 5.3 shows an example of port watcher’s result. It has similar content to an 

actual trace as shown in Figure 5.2. The port watcher also prints the LPSM state of the 

L_Port at event occurring time. Through examining these events, the correctness of the 

protocol implemented in the simulation models is validated. For some examples, the 

six-ordered-sets-gaps requirement between frames is fulfilled; the R_RDY, OPN, CLS 

and other signals are sent only once; the R_RDYs are transmitted with the rule of at 

least two fill words prior-to and following-by; the logic of LPSM state transition is 

verified; the Alternative BB credit flow control logic is tested; and the FCP transaction 

protocol is evidenced.  

These traces are also analyzed to achieve some necessary configuration 

information that is used in later system level validation, such as the frame buffer count 

time:4.881436,portID:1,state:3,cnt:70  ::ARB(01,01)::=>::OPN(00,01)::
time:4.881474,portID:1,state:3,cnt:1   ::OPN(00,01)::=>::ARB(F0,F0)::
time:4.881664,portID:1,state:3,cnt:5   ::ARB(F0,F0)::=>::R_RDY:::::::
time:4.881702,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::SOFi3:DATA::
time:4.901462,portID:1,state:3,cnt:520 ::SOFi3:DATA::=>::EOFn3:::::::
time:4.901500,portID:1,state:3,cnt:1   ::EOFn3:::::::=>::IDLE::::::::
time:4.901576,portID:1,state:3,cnt:2   ::IDLE::::::::=>::R_RDY:::::::
time:4.901614,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::IDLE::::::::
time:4.901690,portID:1,state:3,cnt:2   ::IDLE::::::::=>::R_RDY:::::::
time:4.901728,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::SOFi3:DATA::
time:4.921488,portID:1,state:3,cnt:520 ::SOFi3:DATA::=>::EOFn3:::::::
time:4.921526,portID:1,state:3,cnt:1   ::EOFn3:::::::=>::IDLE::::::::
time:4.921602,portID:1,state:3,cnt:2   ::IDLE::::::::=>::R_RDY:::::::
time:4.921640,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::IDLE::::::::
time:4.921716,portID:1,state:3,cnt:2   ::IDLE::::::::=>::R_RDY:::::::
time:4.921754,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::SOFi3:DATA::
time:4.941514,portID:1,state:3,cnt:520 ::SOFi3:DATA::=>::EOFn3:::::::
time:4.941552,portID:1,state:3,cnt:1   ::EOFn3:::::::=>::IDLE::::::::
time:4.941628,portID:1,state:3,cnt:2   ::IDLE::::::::=>::R_RDY:::::::
time:4.941666,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::IDLE::::::::
time:4.941742,portID:1,state:3,cnt:2   ::IDLE::::::::=>::R_RDY:::::::
time:4.941780,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::SOFi3:CMND::
time:4.942350,portID:1,state:3,cnt:15  ::SOFi3:CMND::=>::EOFn3:::::::
time:4.942388,portID:1,state:3,cnt:1   ::EOFn3:::::::=>::IDLE::::::::
time:4.942464,portID:1,state:3,cnt:2   ::IDLE::::::::=>::R_RDY:::::::
time:4.942502,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::IDLE::::::::
time:4.942578,portID:1,state:3,cnt:2   ::IDLE::::::::=>::R_RDY:::::::
time:4.942616,portID:1,state:3,cnt:1   ::R_RDY:::::::=>::SOFi3:CMND::

Figure 5.3 Simulative L_Port Event Trace 
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of the initiator HBA or the target FC hard disk, the command execution overhead of 

the initiator or the host, the status generation time. These parameters in many cases 

may become some performance bottleneck, and may dominate the I/O performance. 

For example, the initiator HBA command execution time may determine the maximum 

I/O throughput for small access. 

5.2 Trends Confirmation 

In order to confirm and verify the simulation model’s overall correctness, a series 

of simulations have been conducted, with some basic performance factors changing 

while others keep constant, so that the overall trend of the FC-AL performance can be 

achieved. High accuracy of most hardware overheads in these simulations is not 

required, since this thesis is focusing on the changing trends.  

The close-system I/O workload is used in these and succeeding simulations. As 

shown in Figure 4.19, the workload generator initially generates number “n” of I/Os 

that will simultaneously enter the I/O subsystem under test. The execution order of 
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I/O 
Arrival I/O Completion 

and Departure

# n of I/Os are closed in the 
system to be execute. 

Figure 5.4 Close-system I/O Workload 
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these I/Os is up to the I/O subsystem, either concurrently or sequentially or in-between. 

When any one I/O completes, it departs from the I/O subsystem and triggers the I/O 

generator to generate a new I/O that will enter the subsystem again quickly. 

Subsequently, there are always number “n” of I/Os existing in the I/O subsystem. With 

greater number “n”, the subsystem will be more deeply explored for parallelism. This 

is probably the reason why the “n” is often instead called “queue-depth” in I/O 

performance measurements.  

The remainder of this section presents the simulation results for a number of cases. 

Firstly, the simulation result of two nodes configuration (one initiator and one target) 

with short physical distance are presented.  The factors of read or write, queue-depth 

and the I/O sizes are considered. Secondly, the effect of number of nodes in the loop is 

discussed. With more nodes attached, the overall round trip time becomes longer and 

the performance shall degrade in some level. Thirdly, the effect of large physical 

distance is investigated.  

5.2.1  Performance of One-to-one Configuration 

This subsection evaluates the simulation model for handling general performance 

simulation on a one-to-one simple configuration (one initiator to one target and no 

other passive port). The HBA overheads for command execution are set to small to 

simplify the analysis. The FC link rate is set to one gigabit per second and the 

alternative buffer to buffer credit flow control with one LoginBBCredit is supported. 

The full duplex function is turned on. The HDD access time is configured to small so 

that the data can be transferred quickly, while the maximum concurrent I/O requests 

supported by the HDD is set to four. The closed-system I/O workload is used with 

various queue-depths.  
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When queue depth is one, the simulated throughput grows and approaches to the 

maximum bandwidth of 100 MB/s as the I/O size increases, since the weight of the 

system overhead per I/O request over the data transfer time significantly decreases 

when I/O size changes from small to large. The system or the FC-AL protocol 

overhead causes some idle periods before and after the frame transfer and the fraction 

of idle periods to the frame transferring determines a lower than 100% bandwidth 

utilization. For example, when I/O size is 2 KB, one single data frame is used for data 

transfer and every I/O, subsequently every data frame, will impose certain idle periods.  

When I/O size is 1 MB, hundreds of frames (512) may be transferred in a continuous 

chunk. The system overhead imposes only certain idle before and after this chunk of 

frames transfer. The overhead are shared by 512 frames. Therefore, the bandwidth 

utilization increases and the throughputs surges up, approaching to the maximum 

bandwidth. The maximum achievable throughput however are always smaller than the 

nominate 100 MB/s, regardless read, write or the mixtures I/O types, since there is 

only one I/O in processing in any time for one queue depth and there is no chance to 

transfer both read and write data in the two directions. In other word, the full duplex 

potential is not explored. It is also noted that the write throughput is generally lower 

than the read in the simulation, because the write requires the additional phase of 

FCP_XFER_RDY. The mixture of read and write (50% read and 66% read in the 

simulations) has the combination effect of the read and writes, which is worse than the 

read but better than the write. 

When queue-depth increases, multiple I/Os are executed in parallel and so the 

bandwidth utilization increases. The throughput improvement is expected since the 

system overhead is shared among these I/Os. Meanwhile, for the I/O workload with 

combination of read and write, concurrent I/Os can achieve higher than 100 MB/s 
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throughput with full duplex when I/O is large.  Figure 5.5 shows the simulation 

results of the data throughput when the queue depth is 2 and 32, for four types of I/O 

workload with I/O size changing from 0.5 KB to 512 KB. It can be seen that the small 

read and write mixture I/O does not achieve much throughput gain when queue depth 

is two. The possible reason is that the probability of the small read I/O overlapping 

with the small write I/O is small and the full duplexing is hardly possible. However, 

when the queue depth changes to 32, the overlapping probability significantly 

increases and thus mixture type of I/O can achieve significant improvement, as seen in 

(b) of Figure 5.5. Meanwhile, when I/O size is large, it is always possible to find the 

overlapping period, since the devices can support multiple request concurrently. The 

mixture I/O thus achieves better performance than pure read and pure write for queue 

depth 2 (Figure 5.5 (a) ), and even better for queue depth 32 (Figure 5.5 (b) ) It is also 

noted that the 66% read I/O achieves slightly higher throughput than 50% read I/O 

when queue depth is 32. This is probably due to the slightly longer write execution 

time and more read I/Os are required to get better overlapping. 
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Figure 5.5 FC-AL Throughputs with Two Nodes Configuration 

The effect of queue depth can be seen clearly in Figure 5.6 for all four types of I/O 

workload.  For pure read (a) and pure write (b), with deeper queue-depth up to four, 
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the small I/Os achieve significant throughput improvements, since the system overhead 

dominates the small I/O performance, while the large I/Os hardly gain better 

performance because the link utilization is already high. In contrast, the 50% read (c) 

and 66% read (d) achieve significant performance improvement for both small and 

large I/Os because of the concurrency and the full duplexing. However, the 

throughputs do not further increase after queue depth four, since the HDD used 

supports only four maximum concurrent I/Os. 
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Figure 5.6 Queue Depth Effect with Two Nodes Configuration 

To sum up, the results obtained from the simulation model for this example follow 

the expectation in general, for various workload types with different queue depths, 

from small I/O to large I/O. The proper modeling on the full duplex feature is proved 

and the I/O execution process is tested. 
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5.2.2  Effect of Number of Node 

According to the standard, each port in a FC-AL loop is allowed to delay signal 

retransmission for six transmission words. This delay is referred as “per-port delay”. 

With 1 gigabit per second link rate, the per-port delay may up to 226 nanoseconds 

(6*40/1.0625). As node number increases, the overall delay increases. The simulation 

model for this delay effect is verified in this sub section. 

It is assumed that there is only one initiator and one target in the loop, while the 

remaining nodes participate only in signal retransmission. The other I/O overheads are 

set small for better focus. The closed-system I/O workload is used with queue-depth 

equals to one. The total node number in the loop changes from 2 to 126. The response 

time growing trend as node number increase is investigated first, followed by a 

discussion on the performance improvement by increasing incoming frame buffer size 

and implementing non-zero LoginBBCredit.  

As described in earlier chapter, the I/O requests are executed in multiple phases 

according to the FCAL protocol. Table 5.1 presents an analysis on read I/O phases and 

corresponding loop latencies required for the case of one incoming frame buffer and 

Table 5.1 Read Transaction Loop Latency  IncomingBuffer=1, LoginBBCredit=0 

I/O Phases 2k 4k 8k 16k 32k 64k 128k 

1 1 1 1 1 1 1 Arb1 
1 1 1 1 1 1 1 CMD Credit 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 CMD Deliver 
1 1 1 1 1 1 1 Arb2 
1 2 4 8 16 32 64 Data Credit 
1 1 1 1 1 1 1 RSP Credit 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 RSP deliver 
Total 6 7 9 13 21 37 69 

1355 1581 2033 2936 4744 8358 15586 ΔT/ΔN (ns) 

Simulation 1355.28 1581.16 2032.91 2936.48 4743.54 8357.61 15585.97

 70
 



zero LoginBBCredit. To start a read I/O, the initiator first arbitrates and wins the loop 

access (Arb1), requiring one round trip signal transferring (from sending its own ARB 

to receiving the same ARB). After winning the loop, the initiator sends OPN but can 

not send the FCP_CMND frame immediately because of zero LoginBBCredit. It takes 

half round of loop traveling for the OPN to reach the target (assuming that the target is 

located in the middle of the loop trip but it is not essentially necessary), and the target 

send a credit back to the initiator after receiving OPN. Therefore, the initiator spends 

one whole round trip to gain the credit to send the I/O command. The command frame 

takes half round trip to reach the target. After the target receive the command, it spends 

some time to execute the command but the time is not related to the loop latency and is 

not affected by the node number. It is therefore excluded from the analysis. This is also 

applicable to other overheads. When the data is ready, the target has to arbitrate and 

win the loop (Arb2) taking one whole loop latency. It is noted that there are no other 

arbitrators in the example, and that the target can hold the loop for all subsequent 

frame transferring. In other word, no additional arbitration is required fro the data 

transferring. Moreover, with assumption that the status frame is generated quickly 

enough, the status frame is appended to the data frame sequence. However, there are 

crediting loop latencies for each frame transferring. Due to zero LoginBBCredit, the 

target takes one loop-latency to obtain the credit for sending the first data frame. Since 

the incoming buffer is one, there is only one credit sent by the initiator. The target 

therefore has to wait for a new credit that is only received after the initiator receives 

the first frame (half loop latency since the target complete sending the first frame) and 

sends back the credit in another half loop latency, before it can send another frame. 

Therefore, when I/O size is 128 KB, there are total 64 round-trip loop latencies for the 

crediting (assuming frame size is 2KB). Last but not least, the status frame (RSP) 
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requires additional round to obtain the credit and another half round to reach the 

initiator to mark the completion of the I/O.  The total rounds of loop latency required 

for various I/O sizes therefore can be obtained as in the table. Since each increment of 

node number cost additional 226 nanoseconds to the loop latency, the total increase of 

the I/O response time can be determined. 
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Figure 5.7 Effect of Number of Nodes  

The corresponding simulations are conducted to confirm the simulation model 

with the above analysis. Figure 5.7 shows the simulation result of data throughput and 

response time when node number increase, for read I/O with different size from 2KB 

to 128KB. Since the queue depth is one, the data throughput equals to the I/O size 

Equation 5.1 Throughput declines slowly as node number increases:  
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divided by the I/O response time.  The data throughput therefore declines when node 

number increase, since the response time linearly grows. Equation 5.1 gives the data 

throughput degradation function as the node number increases. It can be seen that the 

throughput declines more slowly as the node number become larger. It is also note that 

the response time increase faster when I/O size is large. The response times for each 

I/O size and corresponding node number are measured and the growing speeds per 

node number increment are calculated. As shown in last row of Table 5.1, the 

simulation accurately agrees with the analysis results. 

For the write I/O, the I/O transaction phases differ to the read. The target arbitrates 

the loop and sends the XFER_RDY frame to the initiator after receiving I/O command. 

The initiator then arbitrates the loop and transfers data with crediting overhead for each 

data frame. The last data frame takes half loop latency to reach the target. The target 

then arbitrates the loop to send the status and the I/O is complete when the RSP is 

received by the initiator with half loop latency. Table 5.2 summaries the loop latency 

analysis for the write with same assumption of one incoming buffer and zero 

 Table 5.2 Write Transaction Loop Latency  IncomingBuffer=1, LoginBBCredit=0

I/O Phases 2k 4k 8k 16k 32k 64k 128k 
1 1 1 1 1 1 1 Arb1 
1 1 1 1 1 1 1 CMD Credit 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 CMD Deliver
1 1 1 1 1 1 1 Arb2 
1 1 1 1 1 1 1 XFER Credit

0.5 0.5 0.5 0.5 0.5 0.5 0.5 XFER Deliver
1 1 1 1 1 1 1 Arb3 
1 2 4 8 16 32 64 DATA Credit

0.5 0.5 0.5 0.5 0.5 0.5 0.5 Data Deliver
0 0 0 0 0 0 0 Arb4 
1 1 1 1 1 1 1 RSP Credit 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 RSP deliver
Total 8 9 11 15 23 39 71 

1807 2033 2485 3388 5195 8809 16038 ΔT/ΔN (ns) 

Simulation 1807.06 2032.94 2484.71 3388.24 5195.29 8809.41 16037.65
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LoginBBCredit. A set of simulations are conducted and the response time growing 

speed per node number increment are presented in the last row of the table, which are 

accurately matching the analysis result. 
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Figure 5.8 Small I/O Read/Write Comparisons for Node Number Effect 

Apparently, the node number increase has greater effect on the write than that on 

the read. Figure 5.8 shows the simulation result of data throughput and I/O response 

time for the comparison of the read and the write when I/O size is small in (a) and 

large in (b), with node number increasing from 2 to 126. As shown, the small write 

performance decline much noticeably from read comparing to the large I/O. This is 

because the weigh of the loop latency overhead to the data transferring is much smaller 

for large I/O. For 128K request, the total data transfer time is 1.25 milliseconds 

(128KB divided by 100MB/s), while the total loop latency difference between the read 
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and the write is about 0.5 microseconds only. Therefore, the large write is only 

marginally worse than the large read for the performance degradation caused by node 

number increment. 

From the above loop latency analysis, it is clear that the performance can be 

improved by eliminating the loop latencies required for crediting. Two options are 

considered. One way is to equip more incoming frame buffers to the port, so that the 

frame can be sent continuously. The other supplemental way is to make the 

loginBBCredit non-zero, so that the port can transfer frame immediately after winning 

the arbitration.  

Figure 5.9 presents the simulation results of data throughput for small (2KB 

read) and large (12KB read) I/Os, for the node number effect when various incoming 

frame buffer number and non-zero loginBBCredit are applied. As shown in (a), where 

I/O is small and loginBBCredit remains zero, the performance is noticeably improved 

when incoming buffer changes from one to two. No further improvment is achieved 

when incoming buffer increase further to three or four, since there is at maximum only 

two frames (one data frame and one status frame for 2KB I/O) to send and only one 

crediting loop latency is saved for the second frame. By contrast, when the I/O is large, 

two incoming frame buffers improve throughput tremendously as shown in figure (b). 

At 60 nodes, the throughput degradation from 2 nodes for two incoming frame buffer 

is only about one tenth of that for one incoming frame buffer. The reason is that the 

two incoming frame buffer make it possible to transfer all data frames continuously. In 

such case, the first frame is sent after the first credit is received and by the time of 

transferring completion, the second credit shall already be received and the second 

frame can be sent. On the other hand, the first frame takes half loop latency to reach 

destination port and a new credit is sent back in half loop latency. The new credit 
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therefore will reach the frame sender in one loop latency and if and only if it arrives 

earlier than the completion of the second frame transferring, the third frame can be sent 

continuously. That is the reason why the data throughput falls at about 90 nodes, where 

the loop latency is about 20.34 microseconds (90*224) exceeding 2KB frame 
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Figure 5.9 Sufficient Buffering to Improve Performance 
     (All vertical axis measure the data throughput in MB/s) 
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transferring time (19.58 microseconds). When incoming buffer is three, the new credit 

will always arrive earlier than two frames transferring for all possible node number 

(2-127), and thus data frames can be sent continuously. Four incoming buffer serves no 

better than three. Comparing (c) to (a) and (d) to (b), if non-zero LoginBBCredit is 

implemented, the performance is further improved for both small and large I/Os, since 

the port can send frame without the initial crediting latency. If incoming frame buffer 

is sufficient, one LoginBBCredit can eliminate the initial crediting latency when node 

number is smaller than 90. After that, a small waiting time is required to receive the 

new credit after the first frame is sent and this time has only minor effect on the overall 

throughput and even hardly noticeable when I/O is large, as shown in (e) and (f).  

From above analysis, it is save to conclude that the configuration with three 

incoming frame buffers and one LoginBBCredit can sufficiently support large loop up 

to the maximum 127 nodes. However, the loop latency still increases as more nodes 

are added and cause performance degradation since the protocol require some 

minimum round-trip communications. Figure 5.10 plots the throughput and I/O 

response time for the case of three incoming frame buffers and one LoginBBCredit, as 

a comparison to Figure 5.7. It can be seen that the degradation are greatly reduced and 

all I/O sizes has same response time growing speed in Figure 5.10, which means no 

additional overhead are required for large I/O. 

To sum up, the simulation model are accurately developed in term of port delay, 

the I/O transaction protocol is properly modeled and the alternative buffer to buffer 

flow control is correctly implemented. 
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(a) Data Throughput Effect of Number of Nodes

(b) Response Time Effect of Number of Nodes
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   Figure 5.10 Effect of Number of Node with Optimal Buffering 

5.2.3  Effect of Physical Distance 

The signal propagation delay for long physical distance may become significant 

enough to greatly degrade the I/O performance. Figure 5.11 shows the simulation 

results obtained from the simulation model for the effect of long distance transfer. 
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As can be seen, the throughput degrades tremendously when the physical distance 

extends from 100 meters to 100 kilometers.  This is probably due to two problems. 

Firstly, the long distance causes a large round trip time for an L_Port to send and 

received signals for loop communication. For optical cables, one single round trip time 

reaches about 0.5 milliseconds for 100 kilometers loop distance. Since each I/O 

requires minimum three loop round trips (arbitrating, send OPN and receive first 

R_RDY, send and receive CLS), the minimum time require is 1.5 milliseconds, which 

results in less than 700 IOPS and 1.4 MB/s for 2 KB I/O when queue depth is one. 

Secondly, the performance degradation for large I/O may be probably also due to 

insufficient frame buffer for the BB credit flow control. With 2 gigabit per second FC 

link rate, one 2K FC frame is transmitted in 10 microseconds. When I/O size is 2 M, 
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the total transmission time is about 10 milliseconds (1024 frames * 10 microseconds 

per frames). With sufficient incoming frame buffer, the bandwidth utilization can be 

calculated as 10/(10+1.5) and results in over 85%. The achievable throughput therefore 

shall still be about 170 MB/s. This does not happen because the port being simulated 

does not have enough incoming frame buffer. The frame sending port has to wait for 

R_RDY to come when the credits are used up. 

With the same 100 kilometers distance example, it will take 10 microseconds to 

transmit one 2 KB frame from the first bit to the last bit, and 0.25 milliseconds 

(assuming the destination port is in the middle of the round trip) for the last bit of the 

frame to reach the destination. Assuming that the destination port takes little time to 

clear the buffer, it sends back an R_RDY immediately when it receives the frame. The 

R_RDY then reaches the source port in 0.25 milliseconds. The total time from the 

beginning of frame sending to the time when the source port receives the 

corresponding R_RDY is thus about 0.51 milliseconds. During this period, the source 

port may receive several other R_RDYs, together with the remaining credits after the 

one used for sending the frame. If and only if all these add-up is greater than 51 

(0.51/0.01), the source port is possibly continuously transmitting frames.  Hence, total 

52 incoming frame buffers are required for fully utilizing the transmission bandwidth.  

However, the port being simulated has only four incoming frame buffers in this 

example, which is far less than the required. After every four transmission, the port has 

to wait for 0.47 milliseconds (0.51-0.04). The bandwidth utilization can thus go low to 

about 8.5%, which results in about 18 MB/s data throughput. The simulation results 
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shown in Figure 5.10 agree with the above analysis. Therefore, the degree of the model 

validity is further improved. 

5.3 Actual Testing and Simulation Comparison 

The simulation model so far has been verified in transmission levels by using the FC 

analyzer and confirmed on the general performance trends, by comparing simulation 

result with general analysis. In order to further validate the model, an actual system 

experiment is conducted in this section to compare the actual measurement with the 

simulation result. 

5.3.1  Experimental Environment 

The experiments are conducted on a FC-AL configuration with one window’s 

initiator and one FC RAM disk target. Two Qlogic 2300 FC HBAs are used to support 

the 2 Gigabit FC, one for the initiator and the other for the target. Microsoft Window 

Table 5.3 Experimental System Configuration 

 Initiator Target 
Hardware CPU: AMD AthonMP 1600+ CPU: Intel PIII 1GHz 

FC HBA: Qlogic 2300 FC HBA: Qlogic 2300 
RAM: 2x256MB DDR 
SDRAM  

RAM: 4 x 1GB Kingston ECC 
Reg. PC133  
Mainboard: 64bit PCI, Supermicro 
370 

Mainboard: 64 bit PCI Tyan 
Tiger MP2466N  

 
OS: RedHat 8.0 Kernel: 2.4.18 Software OS: Windows XP Professional 

SP1 Driver:  In-house 2300 target 
driver Ver 1.0, Driver: Qlogic Driver Version 

8.1.5.12 In-house Linux FC RAM Disk Ver 
2.0 Tool: Intel IOMeter 

Version2003.02.15 

 81
 



XP is installed on the initiator system together with the HBA initiator device driver to 

drive the HBA. The target HBA is installed on a Linux system that is configured to be 

a virtual HDD using DSI’s FC RAM Disk software. The software maps all storage I/O 

to the memory rather than to an actual magnetic disk. Since this thesis is focusing more 

on the FC-AL connection, using RAM disk as a target helps to isolate problems from 

modeling of actual hard disk drive. Table 5.3 gives the detail hardware and software 

configurations in the experiments.  

The I/O Meter [40], widely used in the industry, is installed on the initiator system 

to conduct the experimental test and measurement. After the system is boot-up, the 

virtual hard disk appears in the window system as a “physical raw disk” and is ready to 

be tested by the I/O Meter. The “physical raw disk” test bypasses the file system 

overhead for better focusing. The I/O Meter typically supports the closed-system 

workload, with specifiable parameters of queue-depth, I/O size, fraction of read and 

others. The software also allows specifying a “warm-up” time to eliminate the transient 

period of the test, as well as the testing duration in which the I/O statistics are collected. 

The simulation sets 10 minutes for the warm-up and another 30 minutes for the data 

collection in each test. Since the RAM DISK responses very fast and it will complete 

1,800 I/Os for 2 MB request in 30 minutes and many times more for smaller I/O size. 

This will give sufficient sample space for the confidence of the measurement.  

The simulation measures the system’s data throughput (MB/s) and I/O throughput 

(IOPS) with I/O size changing logarithmically from 2 KB to 512 KB, queue-depth 
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linearly from 1 to 12 for both read and write. The obtained measurements are recorded 

and compared with the corresponding simulation results.  
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Figure 5.12 Read Experiments Comparisons 
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Figure 5.13 Write Experiments Comparisons 
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Figure 5.14 Queue Depth Effect Experiment Comparisons 
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5.3.2  Result Comparisons 

Figure 5.12-5.14 plot simulated and tested results together for comparison. The 

tested results are drawn in round-dot line and the simulated data are in triangle-mark 

line. It can be seen that the simulation results match well with the actual measurements 

for all cases. Further numerical comparison shows that the mismatching are mostly less 

than 10%. For read operation simulation, the mismatching is less than 3%. Thus, the 

correctness and accuracy of the simulation model is demonstrated. 

5.4 Summary 

The simulation model has been calibrated and validated from three different 

prospects. From the FC signal transmission level angle of view, the model has been 

verified by checking signal transmission events against the actual FC analyzer’s traces. 

From the general I/O performance trends point of view, it has been proven that the 

simulation model outcome agrees well with the expectation. Lastly, and also more 

importantly, the simulation model has demonstrated its accuracy by comparing its 

result with actual experimental measurement. 
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Chapter 6  

Command-First Algorithm Performance  

The Command-First Algorithm (CMDF) is evaluated by simulation in this chapter. 

The overall method for the performance comparison between normal schedule and 

CMDF is first presented. The configuration parameters and overhead constants are 

stated. The performance improvement of CMDF on a sixteen HDDs storage system is 

presented and the effects of CMDF are further investigated when number of HDDs 

varies, the HDD access time changes and workload increases. 

6.1 Overall Method 

The effect of CMDF is evaluated by comparing I/O performances of an identical 

simulative storage system with or without the algorithm. As shown in Figure 6.1, a 

simulative storage system under test can be determined with given configuration system 

parameters and FC-AL schedule methods. The simulative storage system use FC-AL as 

I/O Workload

Generator

I/O Workload

Generator
Simulative Storage 

System

FC-AL 
schedules

System 
Parameters

Performance MeasurementPerformance Measurement

I/O Throughput (IOPS)I/O Throughput (IOPS)

Data throughput (MB/s)Data throughput (MB/s)

Average Response Time Average Response Time 
(ms/IO)(ms/IO)

Queue DepthQueue Depth
I/O SizeI/O Size
Read FractionRead Fraction

NormalNormal

Command FirstCommand First

Figure 6.1 Performance Evaluation Method for CMDF 
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the backend interconnection. The arbitration schedule used on the storage controller of 

the storage system can be configured as either normal or CMDF. Once the system under 

test is determined, the I/O workload generator injects I/O requests based on the given 

parameters such as queue depth, I/O size and read fraction. The simulation model 

processes these I/Os and reports their completion.  

The performance matrixes such as I/O transaction throughput (IOPS), data transfer 

throughput (MB/s) and average I/O response time (ms) are monitored during each 

simulation. The total number of I/O requests that have been completed is recorded. By 

dividing the total number of completed requests to the simulation duration, the IOPS 

can be computed. During the simulation, the payload of every data frame transferred 

from source to destination port is counted for the total data transferred. The total data 

transferred is divided by the simulation time to achieve the data throughput. Each I/O 

request is time-stamped for arrival and completion. The I/O response time is 

determined by subtracting the completion time to the arrival time. The sum of I/O 

response time of all I/O requests is computed by adding the I/O response time to a 

history variable that holds previous sum. The average response time can therefore be 

achieved by dividing this sum to the total number of I/O requests. 

6.2 System Configuration 

The simulative storage system consists of one imitator HBA (storage controller) 

and a number of HDDs connected by a shared FC-AL loop, as shown in Figure 6.2. 

The storage controller is equipped with the specified arbitration schedules: the normal 
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Storage 
Controller

…
HDD1 HDD2 HDD3 HDD N  

Figure 6.2 System Configurations 

schedule or the CMDF, which can be determined by configuration inputs. By contrast, 

the HDDs attached use the normal arbitration schedule only.  Other overhead 

constants and control parameters used in the model are specified as follows. 

6.2.1  System Overhead Constant 

It is initially assumed that the HDDs used are state-of-art fast disks with two 

milliseconds average access time and 50 MB/s data transfer rate. A single disk can 

therefore provide up to 500 I/Os per second for small access and 50 MB/s data 

throughput for large I/Os.  It is noted that the seeking time and the rotational latency of 

the disk access are not distinguished in the model. They are included in the total delay 

from receiving command to beginning of data transferring. The effects of different HDD 

access speeds are further investigated. 

On the other hand, for the purpose of problem isolation, it is further assumed that 

other overheads of the storage controller are small and negligible. This may be not true 

for a real storage system, but it is worthwhile to artificially configure these overheads to 
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small so that some performance bound problem of FC-AL loop can be investigated 

under saturated conditions. The system overhead constants are summarized in Table 6.1. 

Based on the analysis of real FC analyzer traces obtained during the model 

validation, the simulation sets HBA’s overhead and control constant as shown in Table 

6.2 and Table 6.3 for the initiator and the target respectively. It is noted that the HBA has 

command execution overhead of 43.9 microseconds, which theoretically results in 22K 

IOPS I/O processing capacity. Following most industry implementation, the login 

guaranteed buffer credit is set to zero. The DMA transfer bandwidth between the HBA 

Table 6.2 Initiator HBA Overhead and Control Constant  

Incoming Frame Buffer 3 

Login Guaranteed Buffer  0 

Maximum Frame Size 2048 Bytes 

Full Duplex No 

Command Execution Overhead 43.9 microsecond 

FCP_XFER_RDY Handling Overhead 11.8 microsecond 

DMA Bandwidth 1064 Mbytes per second 

DMA Scheduler Overhead  15.5 microsecond 

DMA Round Robin No 

Incoming Frame Processing Overhead 400 nanosecond 

Single Frame Transfer Overhead 20.2 microsecond 

  

Table 6.1 System Overhead Constant 

HDD Access Time 2 milliseconds per I/O 

HDD Transfer Bandwidth 50 Mbytes per second 

FC Link Rate 2 Gigabits per second 

Storage Controller Overhead Small and negligible  (Close-system workload “think time” ) 
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Table 6.3 FCP Target Overhead and Control Constant  

Incoming Frame Buffer 2 

Login Guaranteed Buffer  0 

Maximum Frame Size 2048 Bytes 

Full Duplex No 

Command Execution Overhead 47.4 microsecond 

FCP_RSP Generation overhead 10.3 microsecond 

DMA Bandwidth 1064 Mbytes per second 

DMA Scheduler Overhead  15.5 microsecond 

DMA Round Robin No 

Incoming Frame Processing Overhead 400 nanosecond 

Single Frame Transfer Overhead 20.2 microsecond 

  
 

and the rest of the system is set to be 1046 MB/s corresponding to the 133 MHz 64 bits 

optimal bus speed. However, the overhead of the DMA scheduler is set to about 15 

microseconds. At the same time, the DMA scheduling policy use FCFS.  

6.2.2  Control Variables and Result Collection 

 Other control variables are summarized in Table 6.4. The control variables include 

four types of parameters, namely the FC-AL schedule, the number of HDDs, the HDD 

access time and the I/O workload. The FC-AL schedule is set to either normal or CMDF. 

The HDD number is set to 16 initially. The effects on variety of HDD number are also 

simulated. The HDD access time is set to 2.0 milliseconds as the base. The effects of 

HDD access time increases or decreases are evaluated. The closed-system I/O 

workloads are used with different “queue depth” per HDDs, I/O size logarithmically 

increases from 2 KB to 1 MB and three request types: pure read, pure write and 
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Table 6.4 Configuration Variables 
 
FC-AL Schedule Normal  

CMDF 
 

HDD Number 16, and 2 to 126 
HDD Access Time 8.0 millisecond 

4.0 millisecond 
2.0 millisecond 
1.0 millisecond 
0.5 millisecond  

I/O Workload Queue Depth (I/Os per HDD): 
1, and 2 to 16 
Options: 
100% Read 
100% Write 
Read Write mixture (with various Read fraction) 
Size:  
2KB to 1MB logarithmically increase 

  

read/write mixtures. The simulations were done first on a configuration of 16 HDDs 

system with other variable changes.  Once the target system is determined, different 

workloads were applied. Each of these workload configurations, e.g., “1 queue-depth 2 

KB pure read”, is scheduled in one simulation running. The simulations were run on a 

Pentium IV 3.0 G CPU computer with Linux operating system.  

Each simulation running lasts for a sufficient period so that enough I/Os can be 

processed to achieve stable measurements.  The I/O statistics during simulation 

“warm-up” and “shut-down” periods are excluded in the measurement. The “warm-up” 

period is considered complete when first ten I/Os per HDD for one queue-depth are 

processed. If queue depth is n and HDD number is 16, the total number of “warm-up” 

I/Os is 160n. Similarly, the last 160n I/Os are not counted during the “shut-down” 
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period. Thus, if the targeted measurement I/O number is N, the total I/O to process is 

(320n+N). 

6.3 Result Analysis  

The simulation results are presented and analyzed in this section. A FC-AL 

storage system with 16 HDDs is first simulated to compare the I/O performance 

between the normal schedule and the CMDF schedule. Event though FC-AL can 

support up to 127 devices in a single loop, it is often criticized, with no exception from 

other storage interfaces, for not being able to provide enough sustainable bandwidth 

for all high performance HDDs attached. For example, with 50 MB/s HDDs, it can 

only theoretically support up to four HDDs when the link speed is 2 gigabit per second 

(200MB/s). However, the actual real-life application fortunately does not request for 

such high transfer throughput to every disk at the same time. An FC-AL based storage 

system with 16 HDDs attached is studied as the base system, since it gives a fairy large 

attachment and receives less criticism for saturation. After evaluation on the base 

system, the simulation studies are conducted for other performance factors such as the 

effect of different read fraction, the effect of HDD speed, the effect of HDD number 

and the effect of queue depth. 

6.3.1  Based Line System Performance Improvement 

The simulation results of a 16 HDDs storage system with or without the CMDF 

algorithm are presented in Figure 6.3~6.5 for data throughput (MB/s), I/O throughput 

(IOPS) and average response time (millisecond). It can be seen in Figure 6.3 that the 
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Figure 6.3 Based Line Storage System Data Throughput Comparison 
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data throughput raises sharply as the I/O size increases, for all cases. The measured data 

throughput achieves about 7 MB/s at smallest I/O size (1KB) and grows when I/O size 

increases and approaches to its maximum throughput. By contrast, the I/O throughput 

(IOPS) declines as I/O size increase, as shown in Figure 6.4. It achieves about 7.5 K 

IOPS when I/O size is 1 KB and reduces to half when I/O size is 32 KB. I/O average 

response time shown in Figure 6.5 increases as the I/O size increase. With the 

close-system workload, these three performance metrics are not independent, although 

they are collected independently. The data throughput equals to the I/O throughput 

multiplying the requests size, while the average response time could be calculated by 

dividing the queue depth by the I/O throughput. This thesis is focusing on data 

throughput analysis and the interpretations are extendable to the other two. 

For the purpose of comparison, the I/O performance measurements for normal 

schedule and for CMDF are plotted together in each figure. The triangle-mark blue line 

presents the performance of the normal schedule and the round-dot red line presents the 

CMDF. It can be seen from Figure 6.3 that the CMDF achieves significant performance 

improvement when I/O request size is greater than 8 KB for pure read (100% read) and 

read/write mixture (66% read) access. The CMDF however does not improve the 

performance for pure write. The data throughput relative improvements by CMDF are 

tabulated in Table 6.5. It is clear that the CMDF effectively improves the I/O 

performance for read I/O. The improvements are achieved only when the I/O size is 

larger than 8 KB. As the I/O size further increases, the data throughput achieved by the 
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Table 6.5 CMDF Data Throughput Relative Improvement 

PureRead PureWrite ReadWrite 
I/OSize 

NORM CMDF NORM CMDF NORM CMDF Δ% Δ% Δ% 
7.32 7.32 0.00% 7.27 7.27 0.00% 7.31 7.31 0.00% 1KB 

14.47 14.47 0.00% 14.37 14.37 0.00% 14.44 14.44 0.00% 2KB 
28.29 28.29 0.00% 27.97 27.97 0.00% 28.21 28.21 0.00% 4KB 
54.13 54.13 0.00% 53.18 53.18 0.00% 53.86 53.86 0.00% 8KB 
75.66 98.1 29.66% 96.62 97.81 1.23% 74.26 99.05 33.38%16KB 
102.56 165.09 60.97% 163.09 161.5 -0.97% 107.54 157.69 46.63%32KB 
117.72 193.14 64.07% 182.93 183.63 0.38% 146.05 190.66 30.54%64KB 
134.22 194.09 44.61% 186.07 186.43 0.19% 162.00 192.19 18.64%128KB 
144.33 194.57 34.81% 187.42 187.42 0.00% 176.00 192.81 9.55% 256KB 
149.98 194.82 29.90% 188.23 188.23 0.00% 183.59 192.9 5.07% 512KB 
152.97 194.94 27.44% 188.57 188.57 0.00% 186.37 193.03 3.57% 1MB 

CMDF approaches to the maximum that is bounded by the loop nominate bandwidth of 

200MB/s. 

For read access, when I/O size is small (smaller than 16KB), the CMDF does not 

achieve better throughput because the overhead of the I/O commands dominates the 

response time for small I/O. When the request size is small, the loop occupying time by 

a target HDD to transfer data to the initiator is short. The target HDD releases the loop 

quickly after access completion. Consequently, the probability of multiple devices 

simultaneously arbitrating for loop access is small. In other words, the fairness access 

window is small and the storage controller can quickly get access on the next access 

window without the CMDF. When request sizes become bigger, the target HDDs take a 

longer time to transfer data and situations of multiple devices arbitrating for loop access 

become more frequent. In such environment, the storage controller has to wait for the 

next access window until all devices have finished their data transfer for normal 

schedule. By contrast, the CMDF does not need to wait for as long. Once the 
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FCP_CMND frame is ready, the storage controller can start arbitration for accessing the 

loop with the CMDF schedule and send commands earlier. The target HDDs thus can 

start to serve the request in advance and performance gain is achieved.   

Two main reasons may account for no obvious benefits from the CMDF when 

access is writing. In the first hand, since the writing data are all transferred from the 

initiator to the writing target, the initiator shall be mostly holding the loop when a new 

command arrives. It can therefore send the command immediately without the CMDF. 

In the second hand, during a write transaction, a target holds the loop only for 

FCP_XFER_RDY and FCP_RSP sequence, both of which are small in size (48 bytes 

and 60 bytes) and transferred in a single frame sequences. The loop holding time is very 

short, and consequently the command would not be delayed for long owing the Fairness 

Access Algorithm if it ever happens.  

For the case of read/write mixture with 66% read, the CMDF achieves relative 

smaller performance gain than pure read. It can be seen from Figure 6.3 (a) and (b) that 

the CMDF achieves identical data throughput between read and read/write mixture, 

although the read maximum throughput is slightly higher than read /write mixture due to 

the fact that the write require additional process of FCP_XFER_RDY.  The normal 

schedule without CMDF however achieves a noticeable difference in data throughput 

between the pure read and the read/write mixture. The HDD’s data transferring for read 

request will be blocking the storage controller to send commands earlier. The effect of 

read fraction is investigated in the next subsection. 
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6.3.2  Other Performance Factor Analysis 

The effect of other performance factors for the performance improvement by the 

CMDF is investigated in this subsection. The effect of read fraction is first studied. 

With read fraction linearly increasing, the performance improvements by the CMDF 

are monitored. The effect of HDD speed is examined next. It is aiming to evaluate the 

CMDF with 100% and 200% HDD speed increase or decrease. Following this, the 

effect of HDD number increasing is discussed. The number of HDD increases from 2 

to 126 and the I/O performances achieved by the two schedules are compared. Lastly, 

the effect of queue depth per HDD is presented. 

6.3.2.1 Effect of Read Fraction 

Figure 6.6 shows the simulation results for the effect of read fraction for the 

CMDF compared to the normal schedule. Each diagram in the figure corresponds to 

one read fraction from 0.1 to 1.0. The round-dot red lines plot the data throughput 

achieved by the CMDF as the I/O size increases, while the triangle-mark blue lines 

show the data throughput of a normal schedule. It can be seen that the improvement of 

data throughput achieved by the CMDF compared to the normal schedule becomes 

more significant as the read fraction increase. It is also noted that the data throughput 

of the CMDF only slightly increases when the read fraction increases. The 

performance improvements are mainly due to the lower throughput of the normal 

schedule when read fractions become higher. Under the normal schedule, the 

command-blocking factor becomes more significant as read fraction increases and the 

data throughput consequently degrades. 
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Figure 6.6  Effect of Read Fraction for CMDF 
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6.3.2.2 Effect of HDD Speed 

Since the benefit brought by the CMDF is also contributed by the HDD for 

executing the I/O command in advance, the speed of the HDD shall therefore also play 

an important role for the overall performance improvement. The effect of the HDD 

speed is presented in this subsection. Based on the parameters used for HDD in the 

previous section, the speed of the HDD is adjusted for 100% and 200% increments to 

be 1.0 and 0.5 milliseconds access time, and 100% and 200% decrements to be 4.0 and 

8.0 milliseconds. The internal data transfer rate remains 50MB/s.  

Figure 6.7 (a), (b) and (c) show the simulation results of the data throughput 

achieved by the CMDF compared to the normal schedule when I/O size increases for 

three different access patterns of pure read, read/write mixture and pure write. In each 

diagram, the red dotted lines represent the throughput achieved by the CMDF, each of 

them corresponding to one access time as labeled in the legend block. The blue solid 

line represents the data throughput achieved by the normal schedule. It is clear that the 

CMDF achieved significant improvement compared to the normal schedule for all 

different HDD speeds when the I/O access is pure read. For faster HDD, the CMDF 

starts achieving performance improvement from smaller I/O sizes since the data 

transferring time is comparable to the HDD data preparing time (access time). It is also 

noted that with faster HDD, the storage system achieves higher aggregate throughput. 

Because of the ceiling effect of the nominate bandwidth (200MB/s), the throughput 

gain achieved by the CMDF is relatively reduced as the HDD speed becomes faster.  
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Figure 6.7  Effect of HDD Speed for CMDF 
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6.3.2.3 Effect of Number of HDD 

Figure 6.8 shows the simulation results of aggregated data throughput with CMDF 

or normal schedule for 4KB, 32KB, 64KB and 256KB read when HDD number 

changes from 2 to 126. The round-dot red lines in the diagrams show the data 

throughput achieved by the CMDF while the triangle-mark blue lines represent the 

normal schedule throughput.  

It can be seen in the top most diagram of Figure 6.8, the CMDF does not improve 

performance when the I/O size is 4KB. It is however interesting to see that the 

aggregated data throughput increases as more HDDs are attached to the loop and 

settles down to about 90 MB/s around 48 HDDs. After this, the loop becomes saturated 

and the throughput does not increase with additional HDD but rather slightly declines. 

The reason why the CMDF does not improve throughput has been discussed in the 

previous subsection for the case of 16 HDDs. The same reason is applicable here. 

The second diagram in Figure 6.8 shows the simulation results of 32KB read with 

the two schedules. It can be seen that the CMDF does not improve the throughput 

when the HDD’s number is less than eight, while it achieves significant improvement 

when more HDD’s are attached. With given system parameters, the total HDD 

processing time is about 2.6 millisecond including 0.6 milliseconds HDD’s transfer 

time at 50MB/s internal transfer rate for 32KB I/O request, while the ideal FC transfer 

time is about 0.16 milliseconds for 2 gigabit per second link rate (32KB/200MBps). It 

is possible to schedule all eight requests (one per HDD) in the 2.6 milliseconds time 

window for data transferring with idles in-between. With such idle periods, the storage 
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Figure 6.8 Effect of Number of HDD for CMDF 
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controller hence has chance to arbitrate the loop to send a new command. The CMDF 

therefore does not achieve improvement when the number of HDD is small. As the 

HDD number increases to sixteen and greater, it becomes very hard to schedule all 16 

or more sections of data transferring in the same time-window, with idles in between, 

especially as the actual loop occupying time is considerably longer than 0.16 

millisecondsl. In such situation, the HBA may often be blocked from sending new 

commands by multiple sections of data transfer. As more HDDs are attached to the 

loop, the normal schedule achieves higher aggregated throughput because more HDDs 

are ready to send data even though some of the commands are delayed. The aggregated 

throughput grows steadily as the HDD number increases with normal schedule. By 

contrast, the throughput achieved by the CMDF grows quickly to the maximum around 

195 MB/s, and declines slightly as the HDD number increases further from 24, owing 

to the increment of per-port-delays. 

The other two diagrams in Figure 6.8 show the data throughput of the two 

schedules for the bigger I/O size (64KB and 256KB) when the HDD number changes. 

It is clear that the CMDF achieves significant improvement when the HDD number is 

more than four. Under the CMDF, the aggregated data throughput quickly reaches its 

peak at 16 HDD for 64KB I/O, and at 8 HDD for 256KB I/O. After that, the 

throughput slightly degrades due to the additional delay of HDD’s per-port-delay. For 

bigger I/O, it is also noted that the throughput grow rate under the normal schedule 

become smaller as more HDDs are attached. 
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6.3.2.4 The Effect of Queue Depth 

Figure 6.9 shows the data throughputs achieved by the CMDF and the normal 

schedule on a 16 HDD’s storage system for 4KB, 32KB, 64KB and 256KB read when 

number of outstanding I/O requests per HDD increases from 1 to 16. The round-dot 

red lines in the diagrams show the data throughput achieved by the CMDF while the 

triangle-mark blue lines represent the throughput of the normal schedule. 

When I/O size is small (4KB), the CMDF and the normal schedule achieve 

identical throughput regardless of the number of outstanding I/O per HDD (queue 

depth). As stated at the beginning of this chapter, the storage controller spends about 

43.9 microseconds to execute each I/O, which results in maximum of 22K IOPS I/O 

processing capacity. As the queue depth increases, the storage controller I/O 

processing capacity limits the maximum aggregate throughput, that is, about 88 MB/s 

(22K times 4KB).  

When I/O size is 32KB, the aggregated throughput achieved by the CMDF rises to 

the maximum when queue depth per HDD is two. When queue depth further increases, 

the throughput remains unchanged since there is no room for improvement due to the 

ceiling effect of the maximum bandwidth. By contrast, without the CMDF, the 

throughput is limited by the effect of command blocking by the data transferring. 

When queue depth increases, the storage controller can send multiple I/O commands to 

each HDD when the loop is held by the storage controller. The HDDs are therefore 

kept in busy, and the aggregated throughput increases as the queue depth grows until 

the loop is saturated. After saturation, the HDD are mostly busy for either preparing 
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Figure 6.9 Effect of Queue Depth per HDD 
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the data or transferring data through the FC-AL loop when it receives a new command. 

Therefore no benefit can be seen for the CMDF when queue depth is deep enough 

(greater than 6 for the case of 32KB I/O). 

For the cases of 64KB and 256K, the aggregated data throughput achieved by the 

CMDF reaches the maximum even for the case of one queue depth. The FC transfer 

time for 64KB data is about 0.3 milliseconds (64KB/50MBps). All 16 requests 

accessing the 16 HDDs would take about 4.8 milliseconds to complete the data 

transferring. With the CMDF algorithm, a new request command will be issued and 

sent to the corresponding HDD at about 0.3439 milliseconds (0.3 + 0.0439) after the 

data transferring starts, if the data requested by these 16 I/Os are assumed to be 

transferred continuously. Once the corresponding HDD receives the command, it can 

start to prepare the requested data. With the assumption of 2 milliseconds overhead 

and 50MB/s internal transfer rate, the HDD will be ready to transfer data in 3.125 

milliseconds. Adding 0.3439 milliseconds, the HDD will be ready to transfer data at 

about 3.5 milliseconds that is before the completion time of 4.8 milliseconds. The 

requested data can therefore be continuously transferred, and the loop idle periods will 

be kept in minimum. The maximum throughput is therefore achieved. By contrast, 

without the CMDF algorithm, the command may be delayed by the data transferring 

and the HDD would not be able to prepare the requested data in advance. It would 

cause the loop to become idle after completion of previous batch of request and the 

throughput achieved by normal schedule is therefore degraded. 
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6.4 Summary 

This chapter has conducted performance evaluations on the effect of 

Command-First Algorithm compared to the normal schedule on FC-AL storage system 

in this chapter. The overall method for the performance evaluation has been described 

at the beginning, followed by detailing the simulative storage system configuration. 

The I/O performances in terms of data throughput (MB/s), I/O throughput (IOPS) and 

the average I/O response time (millisecond) for the base system consisting 16 HDDs 

have been compared for the two schedules. The Command-First Algorithm has 

achieved up to 50% throughput improvement for medium size I/Os. The effects of 

Command-First Algorithm have been further evaluated in some extended 

environments, such as different number of HDDs, increasing workload (in the form of 

deeper queue-depth per HDD). In all situations, the Command-First Algorithm has 

almost no negative effect. 

 108
 



Chapter 7  

Conclusion and Future Work 

7.1 Conclusion 

The goals of this thesis are to develop a detailed and accurate simulation model for 

high-end storage systems that employ the FC-AL as back-end connection for HDDs, 

and to evaluate the proposed Command-First Algorithm for an FC-AL based storage 

system through the simulation model. This thesis is summarized as following. 

Firstly, a novel way of simulating FC-AL based storage system has been presented. 

A modular simulation model hierarchy for an FC-AL based storage system has been 

developed. The FC-AL transmission model was first introduced, and then the L_Port’s 

functionalities including the LPSM and the Alternative Buffer-to-buffer flow control 

were modeled. On top of that, the FCP HBA model was developed to simulate the FCP 

SCSI transaction. With additional support of an HBA device driver module and HDD 

firmware functions module, the system level simulation tool integration has been 

delivered. 

Secondly, the simulation model has been calibrated and validated. By checking 

signal transmission events against the actual FC analyzer’s traces, the model has been 

verified in term of lowest level transmission. By examining the general I/O 

performance trends, the model has been proven to agree with the expectation. The 

actual experiments have been conducted and the experimental results have been 

 109
 



compared to the simulated results. The results show that the FC-AL model is accurate 

with an error range of less than 3% for read operation.  

Thirdly, the Command-First Algorithm has been proposed in three different levels. 

The fist level is to place the command in front of data so that the command can be sent 

earlier. The second level is the command first arbitration that forces the storage 

controller to operate in unfair mode for command frame transferring. The preemptive 

command transferring, the third level, is to further enforce the storage controller to 

send the command preemptively. 

Finally, the evaluation of the proposed Command-First Algorithm have been 

conducted and compared to a normal FC schedule. The simulation measurements have 

shown that the performance gains achieved by the algorithm are up to 50% 

improvement compared to the normal schedule in certain conditions, and that there are 

no negative effects of Command-First Algorithm.  

7.2 Future Work 

The proposed Command-First Algorithm so far has been proven an effective 

schedule for FC-AL based storage systems. It is however worthwhile to note that the 

evaluation has not included the benefit that might be brought along with the algorithm 

when the optimal scheduling is enabled in HDD. Future work may involve a more 

detailed HDD model to evaluate this effect. On the other hand, the solid effect of the 

algorithm has yet been evaluated by actual implementation. The natural extension of 

the work is to carry a prototype that enables the algorithm. Furthermore, the realistic 
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application environment whereby the algorithm can achieve its significance is another 

consideration for the future work. 
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