
NETWORK STORAGE SYSTEM SIMULATION AND

PERFORMANCE OPTIMIZATION

WANG CHAOYANG

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628472?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NETWORK STORAGE SYSTEM SIMULATION AND

PERFORMANCE OPTIMIZATION

WANG CHAOYANG
(B. Eng.(Hons), Tianjin University)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

For Rong Zheng

Only your patience and your love and constant support have made

this thesis possible.

 i

Acknowledgments

I am sincerely grateful to my supervisors Dr. Zhu Yaolong and Prof. Chong Tow

Chong for giving me the privilege and honor to work with them over the past two

years. Without their constant support, insightful advice, excellent judgment, and, more

importantly, their demand for top-quality research, this thesis would not be possible.

I would also like to thank my ex-colleagues from Data Storage Institute (DSI),

especially the former Storage System Implementation & Application (SSIA) group and

the current Network Storage Technology (NST) division. Without the collaboration

and the associated knowledge exchange with them, this work would again simply

impossible. I would like to delivery my special thanks to Mr. Zhou Feng, Miss Xi

Weiya, Mr. Xiong Hui, Mr. Yan Jie, Mr. So Lihweon and Mr. David Sim for their long

lasting support.

Last, but not least, the support of my parents, parents-in-law and my wife should

be mentioned. I would like at this point to thank my dear wife Rong Zheng, who has

taken many household and family duties off my hands and thus given me the time that

I needed to complete this work. I would also like to thank my parents-in-law, who has

taken care of my daughter during this period.

 ii

Contents

Acknowledgments ... ii

Summary..vii

List of Tables .. ix

List of Figures.. x

1 Introduction.. 1

................................... 1 1.1 Introduction to Data Storage & Storage System

... 3 1.2 Main Contributions

... 3 1.3 Organization

2 Background and Related Work.. 4

... 4 2.1 Fibre Channel Overview

.. 6 2.2 Fibre Channel for Storage

2.2.1 Fibre Channel SANs ... 6

2.2.2 FC-AL for Storage System ... 6

..................................... 8 2.3 Storage System Performance Study Methods

2.3.1 Performance Study by Simulation .. 9

2.3.2 Theoretical Estimation by Analytical Modeling................................... 11

...13 2.4 Summary

3 Command-First Algorithm ... 14

.......................................14 3.1 Analysis of FC-AL Network Storage System

3.1.1 FC-AL Based Storage System .. 15

3.1.2 Storage Controller ... 17

3.1.3 Interfacing to the Host Bus Adapter ... 19

3.1.4 FC HBA Internal Operation.. 20

.........................22 3.2 Performance Limitation of Command Queuing Delay

3.2.1 External I/O Queue ... 22

 iii

3.2.2 Internal I/O Queue .. 23

3.2.3 HBA Internal Queue ... 24

..24 3.3 Limitation of Fairness Access Algorithm

3.3.1 FC-AL Operation .. 24

3.3.2 Arbitration Process and Fairness Access Algorithm............................. 25

3.3.3 Command Delay by Fairness Access Algorithm 27

...29 3.4 Command-First Algorithm

3.4.1 Command-First FIFO.. 30

3.4.2 Command-First Arbitration... 30

3.4.3 Preemptive Transferring Command.. 31

...32 3.5 Summary

4 SANSim and Network Storage System Simulation Modeling 33

...33 4.1 Introduction

...33 4.2 SANSim Overview

4.2.1 I/O Workload Module... 34

4.2.2 Host Module.. 35

4.2.3 FC Network Module ... 36

4.2.3.1 FC Controller Module... 37

4.2.3.2 FC Switch Module.. 38

4.2.3.3 FC Port & Communication Module ... 38

4.2.4 Storage Module ... 38

..................................39 4.3 Simulation Modeling of FC-AL Storage System

4.3.1 FC-AL Module.. 40

4.3.1.1 Signal Transmission.. 41

4.3.1.2 Loop Port State Machine .. 44

4.3.1.3 FC-2 Signaling and Framing .. 47

4.3.1.4 Alternative Buffer-to-Buffer Flow Control 49

4.3.2 FC HBA Module... 52

4.3.2.1 FCP Operation Protocol.. 53

4.3.2.2 FCP Initiator Mode ... 55

 iv

4.3.2.3 FCP Target Mode ... 56

4.3.3 HBA Device Driver Module ... 58

4.3.3.1 FC HBA Initiator Device Driver .. 59

4.3.3.2 Hard Disk Drive Firmware for FC Interface 60

4.3.4 Model Integration.. 60

...61 4.4 Summary

5 Calibration and Validation ... 62

...62 5.1 Transmission Calibrations

..65 5.2 Trends Confirmation

5.2.1 Performance of One-to-one Configuration ... 66

5.2.2 Effect of Number of Node .. 70

5.2.3 Effect of Physical Distance ... 78

...81 5.3 Actual Testing and Simulation Comparison

5.3.1 Experimental Environment ... 81

5.3.2 Result Comparisons .. 84

...84 5.4 Summary

6 Command-First Algorithm Performance .. 85

..85 6.1 Overall Method

..86 6.2 System Configuration

6.2.1 System Overhead Constant ... 87

6.2.2 Control Variables and Result Collection .. 89

..91 6.3 Result Analysis

6.3.1 Based Line System Performance Improvement.................................... 91

6.3.2 Other Performance Factor Analysis.. 98

6.3.2.1 Effect of Read Fraction... 98

6.3.2.2 Effect of HDD Speed.. 100

6.3.2.3 Effect of Number of HDD .. 102

6.3.2.4 The Effect of Queue Depth... 105

6.4 Summary...108

 v

7 Conclusion and Future Work ... 109

..109 7.1 Conclusion

..110 7.2 Future Work

Bibliography .. 112

 vi

Summary
Storage systems are generally built by Redundant Array of Independent Disks

(RAID) technology to meet the high performance requirement of enterprise

applications. Besides RAID technology, the interconnection between the Hard Disk

Drives (HDDs) and the RAID controller plays an important role in a high performance

storage system.

Recently, the Fibre Channel Arbitrated Loop (FC-AL) has become the most

common interconnection in the high-end storage systems. The FC-AL topology

provides a high performance serial shared connection between the RAID controller and

the attached HDDs. In such shared connection, all participating devices have to

compete for the access to the loop. When the loop is occupied by data transmission, the

controller has to wait until the loop is free in order to deliver I/O commands to the

HDDs. In such situations, the target HDDs may stay inactive, resulting in

inefficiencies of HDD utilization and finally affecting the whole RAID system

performance.

In order to evaluate the performance of a network storage system, this thesis

develops an FC-AL based network storage system simulation model that can simulate

the FC-AL protocol up to frame level. The simulation model is developed through a

“bottom-up” approach. The FC-AL transmission is modeled in the first place, followed

by the development of L_Port’s other functionalities including the Loop Port State

Machine [LPSM] and the Alternative Buffer-to-Buffer flow control. After that, the

HBA model is provided and the system level integration is performed with additional

consideration of HBA device driver modeling. Lastly, the FC-AL based network

 vii

storage system simulation model is calibrated and validated through actual system

experiments. The comparison between actual experiments and simulation shows that

the simulation model can achieves high accuracy as to 3% mismatching for read I/Os.

A new scheduling algorithm for the FC-AL RAID system, the Command-First

Algorithm, is proposed to enable RAID controller to aggressively send I/O commands

to the HDDs with higher priority than I/O data. The Command-First Algorithm is

evaluated using the simulation model. The simulation results show that the

performance improvement contributed by the new algorithm is up to 50% in certain

conditions. It is also shown that there are no negative effects for the Command-First

Algorithm.

 viii

List of Tables

Table 5.1 Read Transaction Loop Latency...70
Table 5.2 Write Transaction Loop Latency ..73
Table 5.3 Experimental System Configuration...81
Table 6.1 System Overhead Constant...88
Table 6.2 Initiator HBA Overhead & Control Constant ...88
Table 6.3 FCP Target Overhead & Control Constant...89
Table 6.4 Configuration Variables..90
Table 6.5 CMDF Data Throughput Relative Improvement..96

 ix

List of Figures

Figure 2.1 Fibre Channel Logical Layer ..5
Figure 2.2 Fibre Channel Arbitrated Loop Topology ..8
Figure 2.3 Queuing Network for Storage System..12
Figure 3.1 Storage System for SAN and NAS...14
Figure 3.2 FC-AL Storage System Architecture..16
Figure 3.3 Storage Controller Internal Architecture ..17
Figure 3.4 RAID Controller Internal I/O Process Flow...18
Figure 3.5 Fibre Channel HBA Operation Model..20
Figure 3.6 Command Delay with Fairness Access Algorithm.....................................27
Figure 3.7 Command Delay Timing Model ...28
Figure 3.8 Command Frame Priority Queuing ..29
Figure 4.1 SANSim Internal Structure...34
Figure 4.2 Fibre Channel Network Modeling in SANSim ..37
Figure 4.3 FC-AL Simulation Model Structure ...40
Figure 4.4 Signal Transmission Model ..42
Figure 4.5 “Edge-Change” Simulation Technique...43
Figure 4.6 Loop Port State Machine ..45
Figure 4.7 Alternative Buffer-To-Buffer Flow Control ...50
Figure 4.8 State Transition Delay for Alternative BB Credit51
Figure 4.9 FC HBA Model Structure...52
Figure 4.10 FCP I/O Operation Protocol ...53
Figure 4.11 FCP Initiator Mode HBA Model Structure ..55
Figure 4.12 FCP Target Mode HBA Model Structure...57
Figure 4.13 FC HBA Device Driver Model...59
Figure 4.14 HDD Firmware Function Model ..60
Figure 4.15 System Level Integration..61
Figure 5.1 Finisar GTX-P1000 Analyzer Logical Configuration62
Figure 5.2 Fibre Channel Analyzer Trace..63
Figure 5.3 Simulative L_Port Event Trace ..64
Figure 5.4 Close-System I/O Workload...65
Figure 5.5 FC-AL Throughputs with Two Nodes Configuration68
Figure 5.6 Queue Depth Effect with Two Nodes Configuration69
Figure 5.7 Effect of Number of Nodes...72

 x

Figure 5.8 Small I/O Read/Write Comparisons for Node Number Effect74
Figure 5.9 Sufficient Buffering to Improve Performance ..76
Figure 5.10 Effect of Number of Node with Optimal Buffering78
Figure 5.11 Effect of Physical Distance...79
Figure 5.12 Read Experiments Comparisons...83
Figure 5.13 Write Experiments Comparisons..83
Figure 5.14 Queue Depth Effect Experiment Comparisons...83
Figure 6.1 Performance Evaluation Method for CMDF ..85
Figure 6.2 System Configurations..87
Figure 6.3 Based Line Storage System Data Throughput Comparison92
Figure 6.4 Based Line Storage System I/O Throughput Comparison93
Figure 6.5 Based Line Storage System Average Response Time94
Figure 6.6 Effect of Read Fraction for CMDF...99
Figure 6.7 Effect of HDD Speed for CMDF..101
Figure 6.8 Effect of Number of HDD for CMDF ..103
Figure 6.9 Effect of Queue Depth Per HDD for CMDF ..106

 xi

Chapter 1

Introduction

1.1 Introduction to Data Storage & Storage System

Along with the rapid development of IT technology, the demand for higher

performance and bigger capacity on data storage has been constantly increasing in the

past decades. Multimedia technology enables people to store videos in the form of

hundreds of mega bytes of digital data and to playback anytime. Large databases are

widely implemented for decision-making or process controlling, which requires data to

be up-to-dated and available constantly. A large number of mission-critical

applications demand for high performance for data storage.

The magnetic hard disk drives (HDDs) are used as the primary storage device for a

wide range of applications. Since it was invented half-century ago by IBM, the HDDs

have undergone continuous technological evolutions, yielding larger-capacity,

higher-performance, smaller-form-factor and lower-cost. The areal density of HDD has

increased about 35 million times since it was first introduced [6]. The recent CGR

(compound growth rate) of the areal density is about 100 percent, or doubling every

year, which has broken through the Moore’s law of doubling capacity every eighteen

months for the semiconductor growing. In year 2005, the HDDs with capacity of

hundreds gigabytes are commonly available.

Even with the areal density positively advancement, the total HDD shipment

surprisingly does not decrease. The two famous market research companies,

TrendFOCUS and IDC, both forecasted over 20 percent grow of total units of HDD

 1

shipment from about 305 million units in year 2004 to about 378 million units in year

2005. The essential reason for demanding more HDDs is that the HDD access

performance increases much slowly comparing to the capacity improvement. The CGR

slopes of the mechanical seeking time and the rotational latency of HDD has only

about 25 percent [5]. The individual HDD is therefore not able to meet the enterprise’s

performance demand.

To fill the performance gap and to optimize the cost and reliability, the storage

system that can provide aggregated performance of multiple HDDs has long been one

of the corner stones for enterprise data storage. The RAID technology enables the

storage system to serve I/O request in parallel through striping user data across

multiple HDDs, and to enhance system reliability by parity protection preventing data

lost in the event of individual HDD failure. By introducing large memory cache, the

storage system can accelerate the I/O requests without reading data from the HDDs.

Many other technologies have been developed to optimize the performance. One

important technology is the interconnection between the HDDs and the RAID

controller, which may limit the storage system performance.

A storage system usually consists of one or more separate control units and

multiple HDDs. The control units access to the HDDs through an interconnection. In

ideal situations, each HDD shall dedicatedly connect to the storage controller by means

of unblocked switching network for high parallelism, but it would require much higher

cost. The balance between the parallel performance and the cost is the crucial factor for

success. A shared connection is therefore used as an alternative to provide the

sufficient bandwidth. After the traditional SCSI bus architecture, the Fibre Channel

Arbitrated Loop (FC-AL) has become the most frequently used interconnection for

high-end network storage systems.

 2

1.2 Main Contributions

This thesis provides four major contributions to the studies of FC-AL based

high-end storage systems as following:

 An effective and detailed simulation model is built to support frame and

transmission word level simulation;

 Hardware trace level calibration and actual system experiment comparison are

performed for simulation model validation;

 A new schedule algorithm is proposed to aggressively delivery I/O commands

to optimize I/O performance;

 The simulation results show that the performance improvement contributed by

the new algorithm is up to 50%.

1.3 Organization

The thesis is organized as follows. Chapter 2 presents the basic background of

storage systems and investigates the current status of research in FC-AL network

storage systems. Chapter 3 conducts operational analysis on FC-AL based storage

systems and presents the Command-First Algorithm. In order to effectively evaluate

the performance of a network storage system, a detail simulation model for FC-AL

storage system is presented in Chapter 4. The simulation model is calibrated and

validated in Chapter 5. Chapter 6 presents the I/O performance evaluation of the

Command-First Algorithm by simulation. Finally, Chapter 7 summarizes the research

and discusses the future research work.

 3

Chapter 2

Background and Related Work

2.1 Fibre Channel Overview

Fibre Channel (FC) is a high speed serial interface defined by the ANSI

(American National Standard Institute) as an open industry standard. There are more

than 20 published standards or drafts for different aspects of FC [13]. More recent

development of the FC standards can be found in the FC Project of the T11 Technical

Committee [12].

FC is generally characterized by high speed, long distance, and high scalability

for storage. It provides a general transport network platform for Upper Level Protocols

(ULP) such as SCSI (Small Computer Systems Interface [38]). The SCSI mapping over

the FC is defined in FCP (Fibre Channel Protocol for SCSI) [11].

FC can be logically divided into five logical layers, numbered from bottom to

top as FC-0 to FC-4, as shown in Figure 2.1. Similar to layers in the OSI’s model, each

FC logical layer performs a certain set of functionalities interfacing to nearby layers.

The FC-0 layer defines the physical interface for the FC network for the specification

of transmitter, receiver and the signal propagation media, which includes the fiber

optic cable and the electronic copper cable. The FC-1 layer performs 8bit/10bit coding

and decoding and error control. Sitting on top of the FC-1 layer, the FC-2 organizes

information into a set of frames, sequences, and exchanges and defines other signaling

protocols such as flow control. The FC-3 layer provides additional common services

such as multiple link trunking, multicasting and other services. The FC-4 layer

 4

facilitates the mapping to upper-level protocols such as SCSI, IP, and others.

Additionally, there is a Fibre Channel Arbitrated Loop (FC-AL) [9] protocol between

the FC-1 and FC-2 layers labeled as FC-1.5 in Figure 2.1, which allows the attachment

of multiple devices to a common loop without switches. The FC-0, FC-1 and FC-2 layer

are collectively defined in FC-PH [10].

Figure 2.1 Fibre Channel Logical Layer

 Three basic classes of service are defined in FC standard: Dedicated

connection (Class 1), Multiplex (Class 2) and Datagram (Class 3). Class 1 provides

circuit switch, dedicated bandwidth connection. The connection must be established

before data can be transferred. Once the connection is established, the full bandwidth is

guaranteed until one party releases the connection. Class 2 is a connectionless service.

Frames are independently routed to the destination port by the Fabric, if present. An

end-to-end acknowledgement of frame reception is required for this class. Class 3 is

similar to Class 2, except that no acknowledgement of receipt is given. In Class 3, the

fabric, if present, does not guarantee the successful delivery of frame and it may discard

frames without notification under high-traffic or error conditions; any error recovery or

notification is done at the ULP level. Without acknowledgement, the Class 3 service

 5

provides the quickest transmission and thus it is the most frequently used in various

applications including the SCSI application for storage systems.

2.2 Fibre Channel for Storage

2.2.1 Fibre Channel SANs

A Storage Area Network (SAN) is a dedicated, centrally managed, secured

information infrastructure, providing any-to-any interconnection of servers and storage

systems. SANs are currently the preferred solution for fulfilling a wide range of critical

data storage demands for enterprises [30].

The FC is presently the dominant protocol used in SAN to provide the high

performance data connection. The perfect marriage of the two technologies makes the

great success of both FC and SAN, although other emerging alternatives such as iSCSI

protocol are now developed as the compliments to FC for low cost and other

considerations. Many SAN books actually exclusively discussed the Fibre Channel

technologies adoption, such as [27], [28] and [29].

Fibre Channel supports three types of connection topologies, Fabric, Point to Point

and Arbitration Loop. Since the FC-AL provides a cost effective shared connection

among multiple devices without using expensive switches, it has become a popular

means of interconnecting the storage controllers to the attached HDDs.

2.2.2 FC-AL for Storage System

Since IBM introduced the world’s first storage device in 1945, the storage system

has gone through the same period of evolution as the HDD did [5]. Initially, a storage

subsystem was just a HDD. Over time, more hardware and software functions were

added to the storage system to achieve higher performance, better reliability and lower

 6

cost [6]. The RAID technologies were first proposed in 1980s in [7] to provide a

means of parallelism between multiple HDDs to improve the aggregate I/O

performance and at the same time to extend the whole system reliability through

redundant parity. Since then, various new technologies had been developed to enhance

and optimize the I/O performance of the RAID storage system [8], and the storage

system has become a cornerstone of the entire data storage industry.

Among other factors in a storage system, the interconnection between the storage

controllers and the HDDs is important for the high I/O performance and reliability.

Alternative to the traditional parallel SCSI bus architecture, the FC-AL provides a high

performance reliable common sharing serial interconnection for multiple devices.

Although it is shared topology, the loop has the channel property with which one

device can establish a dedicated communication channel with anther device on the

loop.

The FC-AL topology supports up to 127 devices within a single loop. With 1 G

link rate (precisely 1.0625 GHz clock), the loop provides a common 100 MB/s

bandwidth information transport vehicle for all devices. With support of full duplex, one

may transmit or receive data frames simultaneously and thus achieves double the

bandwidth. The latest development of 4 G link rate further increases the bandwidth to

400 MB/s and 800 MB/s for half duplex and full duplex respectively. With optical

cables, the physical distance of a loop may extend to 10 kilometers. Additionally,

inherited from the common FC feature, the loop provides higher reliability of

communication. All the above mentioned advantages make the FC-AL connection far

exceed the traditional parallel ATA and SCSI interface. Figure 2.2 shows such a storage

system deploying the FC-AL topology with one initiator (controller node) and multiple

HDDs.

 7

Figure 2.2 Fibre Channel Arbitrated Loop Topology

Nowadays, a large number of Fibre Channel HDDs are shipped every month from

every major HDD vendor. These HDDs are mostly (if not all) used as member HDDs in

a storage system. They are most frequently connected through FC-AL loops. It is not

surprising, then, to see a large number of academic publications on FC-AL related

storage system architecture. In the work of Shenze Che and Manu Thapar [22], the

performance of the Video-on-Demand server using FC-AL was compared to traditional

SCSI interface. The reported performance improvement was 50% better. In [23], the

authors provided a software architecture enabling FC-AL based RAID system in a

real-time operating system. The potential of low-cost switching architecture for

extending FC-AL scalability was studied in [24] and a concreted implementation and

study of FC-AL architecture in a real application were presented in [25].

2.3 Storage System Performance Study Methods

Many research works have been conducted on storage technology, storage

networking, and storage subsystem. All those works eventually aim to achieve better

 8

performance in terms of higher throughput, shorter latency and wider bandwidth. The

performance analysis becomes the key to predict, assess, evaluate and explain the

system’s characteristics. There are generally three approaches to conduct performance

analysis for computer system: analytical modeling, physical measurement and

simulation modeling [41]. A survey on the success stories of using these approaches

to study the storage system performance was provided in [14].

The alternative to the analytical modeling and physical measurement is the

simulation modeling, in which a computer program implements a simplified

representation of the behavior of the components of the storage system, and then a

synthetic or actual workload is applied to the simulation program, so that the

performance of the simulated components and system can be measured. Simulation

can provide a view of the system behavior at any level of detail, provided that enough

modeling manpower is available. Trace-driven simulation is an approach that controls

a simulation model by feeding in a trace, a sequence of specific events at specific time

intervals. The trace is typically obtained by collecting measurements from an actual

running system.

2.3.1 Performance Study by Simulation

The physical measurement performs testing and collects measurements performance

data of a running system. By analyzing the relationship between the performance

characteristics, the workload characteristic, and the storage system components,

researchers are able to identify problems and give make decisions on purchasing and/or

configuration for storage system. In [26], Thomas M. Ruwart had conducted

experimental testing on a real system for different combinations of loop distance and

hard disk number.

 9

The real system experimental tests however are often subjected to the given

implementations of vendor specific loop devices, such as the number of the frame buffer

and FC-AL scheduling. Experimental modifications on such hardware are often not

feasible for academic research. Meanwhile, real system experiments usually involve a

very high cost. To conduct a study like [26] will require expensive infrastructure such as

kilometers of fibre optic cables and other equipments.

On the contract, the simulation does not require the presence of an actual system. In

[20], John R. Heath and Peter J. Yakutis implemented their simulation models and

analyzed the performance of FC-AL based storage systems. They discussed the FC-AL

protocol in detail but they did not provide the calibration and validation detail of the

simulation model. Similarly, in [21], David H.C.DU and Tai-Sheng Chang et al.

compared SSA (Serial Storage Architecture) [39] and FC-AL interfaces for disks by

simulation, but the detail modeling method of the FC-AL was not given. Xavier [15] and

Petra [16] also developed simulation model for FC but they modeled more on Fabric

SAN. Some published simulation tools for other storage system’s components can also

be found. The DiskSim[17] and Pantheon[19] are the two well known HDD simulators.

The former had been used in many HDD performance researches such as the

time-critical I/O in [18] and [35], and the HDD schedule optimization in [31] and [32]. A

detail simulation model of a system bus (PCI bus) can be found in [36].

Although simulation modeling has been proven to be an effective approach for

system performance study and new algorithm evaluation, there are some limitations on

current available simulation tools. Firstly, there are few simulation tools that can support

detailed enough simulation studies especially when systems under study become more

complicated. Secondly, a simulation model is an abstracted presentation of an actual

system. Some system reactions are assumed to have minimum impact to the overall

 10

performance and others are modeled as constant overheads (or random variables with

stochastic distribution). The simulation model must therefore be calibrated with actual

system measurements for these overhead constants and further be validated by

examining the simulation results to agree with experimental measurement, before it can

be used for performance prediction in extended situations. Although some of the above

mentioned FC-AL studies were done through simulation, the calibration and validation

of these simulation models were seldom given. It is therefore worthwhile to develop a

new simulation tool that can simulate the detail behavior of the FC-AL network storage

system.

2.3.2 Theoretical Estimation by Analytical Modeling

The analytical modeling makes attempts to predict storage system performance as a

function of parameters of the workload, storage components, and system configuration

by writing mathematical equation. The work in [34] severed as an example of this

approach. The analytic analysis can provide insight into the steady-state performance

and give theoretical performance bounds of the storage system. It usually needs queuing

theory and Markovian analysis, which requires extensive knowledge of probability

theory. In addition, analytical modeling requires skill at approximating the storage

system with simplified mathematical models.

In most analytical works, the internal components of a storage system are modeled

as various service centers that can process requests at a certain service rate. The arrival

requests, i.e. the service demands, are assumed to follow certain distribution (mostly in

Poison Arrival that describes the independent arrival) and the service rate of the

service centers are of some stochastic pattern (such as Poison Process) as well.

Although the analytical modeling may lack detail when compared to the real system

 11

physical measurement and the simulation, it gives some theoretical insight of the

process and effectively predicts the performance bounds of the given storage system.

In [1], Dr. Zhu et al presented their analytical work on SANs for the purpose of

identifying performance bottlenecks. A queuing network model for storage system and

storage network was established from the host systems, along with the FC fabric

network, to the disk array internal components. Six tiers of services centers were

defined to model the I/O processing activities, namely Hosts, FC-SW network, Disk

Array Controller and Cache, FC-AL Network, Disk Controller and Cache and HDA

Center, as shown in Figure 2.3 adopted from the paper. The Fork/Join model was used

to analyze the performance of the disk array. The response time and utilization of each

component as well as the overall system were derived and analyzed based on the

queuing network theory.

 With regards to the performance of FC-AL Network, the authors highlighted that

the “access fairness” algorithm may be a potential problem for disk array controllers to

obtain the optimal overall performance.

Figure 2.3 Queuing Network for Storage System Adopted From [1]

 12

2.4 Summary

This chapter has presented a basic background of the FC standard and the FC-AL

topology used in high-end network storage systems, with an overview of the FC

logical layer, followed by a short discussion on the related works on the FC-AL based

storage system. The performance study methods for storage system were investigated,

and the simulation method has been identified to be an effective approach for detailed

modeling.

 13

Chapter 3

Command-First Algorithm

3.1 Analysis of FC-AL Network Storage System

In today’s Information Technology infrastructure, there are two basic

technological choices of connecting storage: NAS and SAN. The traditional Network

Attached Storage (NAS) provides file level storage for Local Area Network (LAN)

clients/servers. When LAN clients/servers need to access the information stored in the

NAS, they send file requests to the NAS. The NAS then retrieves the information from

the attached storage system and response to the request. The SAN technologies provide

high performance connection between multiple SAN application servers to multiple

Storage Area NetworkStorage Area Network
Switch FabricSwitch Fabric

Local Area NetworkLocal Area Network

SAN SAN
ApplicationApplication

LAN LAN
ClientClient

NAS NAS
ServersServers

Blocked Blocked
Storage Storage
SystemsSystems

Figure 3.1 Storage System for SAN and NAS

 14

storage systems, characterized by high bandwidth, dedicated connection and great

flexibility of space scaling and resource relocation.

In both SAN and NAS scenarios, the storage system plays an important role in

the whole picture of networked storage. The storage systems’ performance always

becomes the key factor to the overall I/O performance. Practically, the storage systems

are one of the key components of IT infrastructure. Figure 3.1 illustrates the storage

system’s position in the overall picture of network storage.

3.1.1 FC-AL Based Storage System

A storage system is generally a collection of hard disk drives (HDDs) that are

aggregated and managed by the storage controller in the form of either a compact

hardware solution or a relatively more software oriented solution. The RAID

technologies are often employed to improve the whole system’s reliability.

Upon receiving an I/O command from the host system, the storage controller

goes through its software and hardware elements to determine which member HDD to

access. Accesses to member HDDs are done through an interconnection between the

storage controller and the member HDDs. The interconnection can be either a fabric

network or a FC-AL loop in the case of Fibre Channel connection. Although the fabric is

the fundamental element of a Storage Area Network (SAN), it does not bring essential

benefit for higher performance compared with the FC-AL connection within a storage

system. For one example, if a storage system is supposed to have one interface

connecting to the external fabric network, the bandwidth bottleneck is on that

connection for the reason that all internal traffics from every attached HDDs must go

through the single connection. Moreover, putting a fabric switch element in a storage

system imposes much higher costs than FC-AL. Therefore, the FC-AL

interconnections are widely adopted in today’s high-end storage system.

 15

The FC-AL based storage system referred to in this thesis means the storage

system where the interconnection between the storage controller and the attached

HDDs is based on Fibre Channel Arbitrated Loop. With FC-AL, the storage system

may physically easily connect hundreds of HDDs with several interface controllers

(FC-AL adapter) each connected to a loop. Today’s HDD shipped by most vendor

supports dual loop connection. This feature is often explored to form a second

independent redundant I/O path for high fault-tolerance. Figure 3.2 shows a typical

FC-AL based storage system that have multiple FC-AL adapters where each of the

Main I/O bus connects to a vertical loop and each of the Redundant I/O bus connects a

..

..

..

..

..

..

.

Front End Front End
InterfaceInterface

Main Storage Controller (Include Main Storage Controller (Include
Main Memory)Main Memory)

FCFC--AL AL
adapteradapter

Main I/O BusMain I/O Bus

R
ed

un
da

nt
 I

/O
 B

us
R

ed
un

da
nt

 I
/O

 B
us

HDDsHDDs

..

..

..

..

..

..

.

Front End Front End
InterfaceInterface

Main Storage Controller (Include Main Storage Controller (Include
Main Memory)Main Memory)

FCFC--AL AL
adapteradapter

Main I/O BusMain I/O Bus

R
ed

un
da

nt
 I

/O
 B

us
R

ed
un

da
nt

 I
/O

 B
us

HDDsHDDs

Figure 3.2 FC-AL Storage System Architecture

 16

horizontal loop. The member HDDs are located on those intersection grids of the two

groups of different dimensional loops so that they can be accessed either by the main

adapters or by the redundant adapters. Although most adoptions use the second I/O

path as redundant to the main one, some other vendors activate both I/O paths with

load balance over them to provide doubled overall bandwidth.

3.1.2 Storage Controller

The storage controller is the core of a storage system. It serves every external I/O

request, and initiates and manages every internal I/O. It is a computer system equipped

with various intelligent and value-added functional modules in either hardware or

software forms. Figure 3.3 shows an example of storage controller internal

architecture. The storage controller consists of three I/O buses and one system bus

connecting by a chipset bridge. One target HBA (Host Bus Adapter) is sitting on the

front bus to receive external I/O request. Multiple initiator HBAs are used and inserted

Main Memory +

Cache

Main Memory +Main Memory +

CacheCache

ChipsetChipsetChipset

Target HBATarget HBA

To HDDsTo HDDs

To HostTo Host Initiator HBAInitiator HBA

Front BusFront Bus

Main I/O BusMain I/O Bus

Second I/O BusSecond I/O Bus

System BusSystem Bus

Target driverTarget driver

υυProcessorProcessor

Initiator driverInitiator driver

Main Control ModuleMain Control Module

CachingCaching RAID RAID AlgoAlgo

Figure 3.3 Storage Controller Internal Architecture

 17

into Main I/O Bus or Second I/O Bus, and each of them connects to a FC-AL loop of

HDDs. A microprocessor and a large memory module are connected through the

system bus on the other end.

A set of software module stacks that handles I/Os is loaded to the microprocessor.

The software stack typically includes the device drivers for both target HBA and

initiator HBA. A main control software module governs the overall I/O activity. When

an external I/O arrives, the target HBA notifies the main control module through the

target driver. The main control module passes the I/O to the caching module to see if

the data requested is available in the main memory. If the requested data is found in the

main memory by the caching module, the I/O is served and data is transferred back to

the external requestor by the target driver through the target HBA. If the caching

……

Incoming
Command
Queue

Retrieve a request
from queue,

NumOSReq++

Placing a request
to incoming queue

NumOSReq
< Maximum?

NumOSReq
< Maximum?

Remove the
complete request

NumOSReq--

Cache
Outgoing
Queue

Issue I/O access

Data
Transferring

process

RAID Algorithm Process

Request Arrival
Event

Request Arrival
Event

Request
Completion Event

Request
Completion Event

Access
Completion Event

Access
Completion Event

Access
Completion

Process

Devices
Queue

Cache Processes

Media Access Scheduler

Figure 3.4 RAID Controller Internal I/O Process Flow

 18

module reports a miss, i.e., the request data are not found in the main memory, the

request is passed to a RAID algorithm module to determine where to read or write the

requested data. Depending on different algorithms used, the RAID algorithm module

processing may result in multiple internal I/O requests accessing multiple attached

HDDs. These internal I/O requests are scheduled by the main control module and are

submitted to the initiator diver so that the initiator HBA can deliver them to the

destination HDDs. After these internal I/O requests are served by the HDDs, the

requested data are sent back to the controller through the initiator HBA. Figure 3.4

shows an example of I/O processing flow in RAID controller in further detail.

3.1.3 Interfacing to the Host Bus Adapter

The Fibre Channel Host Bus Adapter (HBA) is an important component in a

storage system for high performance I/O. It provides completed assistance for Fibre

Channel operation with only minimal involvement of CPU of the host. The system

involvements are done through the HBA device driver. When an I/O request is issued

from the system, the HBA device driver is given an I/O request package with complete

information of the I/O, such as operation type of read or write, the location of the

destination (LUN+LBA), and the location in the main memory of the data buffer that

holds the requested data. The device driver then puts the I/O request package in place

and quickly issues a command through memory mapped control registers to the HBA.

After that, the device driver rests and the host system is free from the I/O operation

until the completion is reported, by means of interruption if necessary. The HBA needs

to use the I/O bus from time to time for DMAing data to or from the System Memory.

Figure 3.5 illustrates an example of a Fibre Channel HBA operation environment.

 19

3.1.4 FC HBA Internal Operation

The I/O operation path from the storage controller, through the device driver, to

the HBA that receives an I/O command has been discussed. The more detail internal

operation of the HBA is analyzed in this section. Referring to the same diagram of

Figure 3.5, an FC HBA typically contains a microprocessor that acts as the coordinator

for I/O operation, a bus control and DMA arbiter that manages the utilization of the

system I/O bus and performs DMA operation for accessing system memory, a link

control unit that directly deals with the FC physical link, and a frame control that

performs the frame management. A pair of FIFOs (First-In-First-Out frame buffer) is

used to temporarily hold the incoming and outgoing frames. A set of HBA specific

commands is defined for the microprocessor to execute functions, such as reset, status

report, I/O command and others. These commands are designed in compact size with

only few bytes so that it can be delivered quickly to the HBA through the device driver.

The HBA retrieves the information of the I/O request through the Bus Control & DMA

System MemorySystem MemorySystem Memory

HBA Device DriverHBA Device Driver

Upper LayerUpper Layer
I/O StackI/O Stack

TXTX

RXRX

I/O BusI/O Bus

Bus Control &Bus Control &
DMA ArbiterDMA Arbiter

Micro Micro
Processor Processor

(FCP Engine)(FCP Engine)

Link Link
ControlControl

Frame Frame
ControlControl

FI
FO

FI
FO

System MemorySystem MemorySystem Memory

HBA Device DriverHBA Device Driver

Upper LayerUpper Layer
I/O StackI/O Stack

TXTX

RXRX

TXTX

RXRX

I/O BusI/O Bus

Bus Control &Bus Control &
DMA ArbiterDMA Arbiter

Micro Micro
Processor Processor

(FCP Engine)(FCP Engine)

Link Link
ControlControl

Frame Frame
ControlControl

FI
FO

FI
FO

Figure 3.5 Fibre Channel HBA Operation Model

 20

from the system memory and then allocates necessary resource for executing that I/O

request. A complete set of indexing information is established, such as the frame

header that contains a reference pointing to the I/O request. Per FCP standard, the

FCP_CMND frame is then constructed and placed into the outgoing FIFO with

assistance from the frame control. The link control establishes a connection with the

target and transfers the command frame to the target from the outgoing FIFO.

The target retrieves the I/O information from the FCP_CMD frame and executes

the I/O request. For read, the requested data obtained from the media are sent through a

sequence of FCP_DATA frames followed by a FCP_RSP indicating the completion

status. For write, the target allocates the memory buffer to receive the writing data and

sends FCP_XFER_RDY to the initiator. When initiator receives the FCP_XFER_RDY,

it looks up the indexing previously established and transfers the data from the data

buffer referred by the indexing in FCP_DATA frame sequences. Upon successfully

transmitting all data, the target sends FCP_RSP to report the completion.

For read, when the initiator HBA receives a FCP_DATA frame, the frame control

unit reports to the microprocessor. The microprocessor retrieves the data payload from

the FCP_DATA frame with assistance of the frame control, looks up the indexing to

get the data buffer location in the system memory and triggers the bus control unit to

DMA the data to system. The process of retrieving data from frame is referred to as

de-encapsulation, which may be done with other hardware components to offload the

microprocessor. For write, the imitator HBA receives FCP_XFER_RDY in the

incoming FIFO. The frame control unit informs the microprocessor about the reception

and the microprocessor interprets the information embedded in the frame to get the

size of the data to be transferred corresponding to this FCP_XFER_RDY and looks up

the indexing for the data buffer location in the system memory. The bus control and

 21

DMA arbiter is then instructed to receive data from the data buffer, and the frame

control encapsulates the received data into FCP_DATA frames and places them into

the outgoing FIFO. The link control proceeds to transmit the frames from the outgoing

FIFO to the destination.

For both read and write, when the FCP_RSP is received, the initiator HBA may or

may not interpret the completion status directly, depending on the different

implementation. The raw FCP_RSP or the interpreted completions information is sent

to the designated memory location that the device driver knows and interrupts the

system for attention. The device driver is activated by the interrupt and performs

error-free checking based on the completion information. If the I/O request is

successfully executed, the device driver reports to the requestor and the I/O is

completed. Otherwise, the device driver may re-issue the I/O request to the HBA for

retry, depending on different error types. The retry may be conducted several times up

to a maximum limit. If it still fails, error recovery routine will be triggered and the I/O

status is reported to the requestor.

3.2 Performance Limitation of Command Queuing Delay

3.2.1 External I/O Queue

As previously discussed, a storage system is designed to provide aggregated

performance of a set of HDDs. Multiple I/O requests may be concurrently sent to

different HDDs. The maximum number of I/O requests that the storage system can

simultaneously process directly affects the aggregated performance.

When the storage system is used as a virtual disk dive, it may report this maximum

outstanding request number (queue depth) to a client in the system initialization

procedure. The client can issue no more than that number of outstanding requests at any

 22

given time. Exceeding that, additional I/Os are placed in a waiting queue (referred to as

client-site queue) until at least one outstanding request is finished. Due to the fact that

the maximum outstanding request number is fairly large for a high performance storage

system, in the case of a single client, the probability of a request waiting in the client-site

queue is small. However, a storage system is often shared by multiple clients in SANs

environment. Each client may generate independent workload and cause multiple I/O

requests concurrently arriving at the storage system. Furthermore, new I/Os may arrive

continually. A number of I/O requests are thus aggregated in the storage system and

there is a higher probability that they may exceed the maximum outstanding request

number. The extra I/O requests must therefore wait and form a storage system site queue

(refers as storage-site queue).

In either case of a client-site queue or storage-site queue, the I/O commands are

delayed and considered to be inefficient. If the I/O commands are delivered earlier, the

HDD could perform optimal scheduling as studied in [31] and [32]. On the other hand,

in a multiple HDDs system, those outstanding I/Os may access a small set of member

HDDs only. The other HDDs may stay inactive although I/Os waiting in the queue may

need to access them. It is therefore of interest to explore possible method to deliver

command earlier.

3.2.2 Internal I/O Queue

As discussed earlier, multiple internal I/O requests may be required by the storage

controller to serve an external I/O. Multiplied with possible large number of external

I/Os, a fairly large number of internal I/Os may be submitted to the internal initiator

HBA’s device driver. Depending on different operating systems, the HBA device driver

may only be able to handle a limited number of outstanding requests. For example, the

windows system can only support up to 255 outstanding requests for one HBA. The rest

 23

of the internal I/Os form a waiting queue and these I/O commands are delayed. This is

another reason to consider if an I/O command could be sent earlier.

3.2.3 HBA Internal Queue

The HBA device driver issues an HBA specific I/O command to the attached HBA

for each internal I/O request. Depending on different implementations, the HBA may

concurrently execute a limited number of the I/O commands, with any remaining I/O

commands waiting. After execution, the FCP_CMND frame corresponding to each I/O

command is placed into the outgoing frame FIFO. It is worthwhile to note that the

workload may be a mixture of read and write and thus there may be a number of

FCP_DATA frames ahead of the FCP_CMND frame.

3.3 Limitation of Fairness Access Algorithm

3.3.1 FC-AL Operation

The basic elements of a FC-AL loop are those nodes that are connected in a

logically unidirectional ring of either fibre optic or copper cable. These nodes in the

Fibre Channel terminology are called L_Ports. Each L_Port connects to its proceeding

neighbor through receiving fibre (RX), and its succeeding neighbor through transmitting

fibre (TX). The control messages and frame data are sent to its next neighbor and

received from its previous node. Some messages will travel along the entire loop and

come back to the L_Port indicating some specific meaning. Some other messages are

only for the designated port and the other ports shall retransmit them in time upon

reception. Those control messages are called Ordered Sets, including arbitration

(ARB), idles, open (OPN), close (CLS), buffer-ready (R_RDY) and others.

 24

Before an L_Port can send frames to another L_Port, it must arbitrate and win the

arbitration for accessing the loop. After the L_Port attains the loop access, it transmits

OPN signal that carries the destination port address and becomes the open port. The

other port checks the OPN signal and compares the destination address to its own port

address. When the addresses match, the port absorbs the OPN signal and becomes the

opened port. A logical point-to-point connection is thus established between the open

port and the opened port. Frames can then be transferred between the two ports. Either

the open or opened port may transmit CLS signals indicating that it desires to close the

connection. Upon reception of CLS, the other party may continue to transfer the

remaining frames and transmit the CLS to release the loop when the frame transfer

completes. The second CLS signal will come to the first port and make the port ready for

next operation.

3.3.2 Arbitration Process and Fairness Access Algorithm

Strictly speaking, a FC-AL loop is not a token ring. There is no token for L_Ports to

chase for gaining the loop access. Neither is there a central arbitrator that governs the

winner of the arbitration if multiple ports are simultaneously arbitrating for the access.

The arbitration is actually done in a distributed manner.

An L_Port starts its arbitration by continually transmitting ARB(x) signal, whereby

the x in the parenthesis is the address of the port. If there are no other ports that also

arbitrate for the access at the same time, the ARB(x) will be retransmitted by all other

ports and the L_Port (x) will receives its ARB(x) and the arbitration is won. If another

port arbitrates the loop at the same time, it compares its own port address with the x

value of the ARB(x) received. If its port address is smaller than x, the port knows that it

has higher priority and thus it replaces the ARB(x) with ARB(y) and transmits this

signal out to the loop. Upon reception of ARB(y), port x stops transmitting ARB(x) but

 25

forwards the ARB(y) since y is smaller than x. The port y will then receive its won

ARB(y) and win the arbitration at the end.

From above description, it can be seen that the FC-AL arbitration has priority based

on the port address that is called AL_PA (Arbitrated Loop Physical Address) in Fibre

Channel term. The port with the smallest AL_PA among all arbitrating ports always

wins the arbitration. This may cause problems. Firstly, if the higher priority port

continuously accesses the loop, other lower priority ports would not have the chance to

gain access and the starvation happens. Secondly, for a busy loop with large number of

ports, event though any one port is not likely to arbitrate continuously, multiple higher

priority ports may take their turns to arbitrate and cause lower priority port to suffer

starvation with increasing probability as the port priority decreases. Thirdly, the pure

priority arbitration causes uneven performance among the loop ports even in a less busy

loop, since the probability of one port’s arbitration being postponed by higher priority

ports increases as the port priority decreases. Thus the pure priority based arbitration

has starvation and unfairness problems that must be solved.

The Fairness Access Algorithm is used in a FC-AL loop to prevent starvation and

unfairness. An L_Port equipped with the Fairness Access Algorithm is not allowed to

immediately arbitrate again after it has won the arbitration, unless it discovers that no

other ports are arbitrating in the same arbitration window. After winning the arbitration,

the L_Port starts sending ARB(F0) signal between frames and monitors its return to

test if other ports on the loop desire to gain access to the loop. The ARB(F0) has the

lowest priority (F0) among all possible port addresses and thus other L_Ports are given

chances to replace the ARB(F0) with their own ARB(X). The moment when the first

L_Port receives the ARB(F0) is subsequently delayed if other L_Ports are arbitrating.

As long as the ARB(F0) is yet to receive, the winner L_Port is in the same arbitration

 26

window and shall continue transmitting the ARB(F0) signal. If there is no more

arbitrating, the first L_Port will eventually receive the ARB(F0). Once the L_Port

receives the ARB(F0), it then transmits an IDLE signal that indicates the end of the

arbitration window and can begin another round of arbitration.

3.3.3 Command Delay by Fairness Access Algorithm

As mentioned earlier, an FC-AL based storage system may consist of a single

controller and multiple HDDs on a FC-AL loop. The controller acts as an I/O initiator

and the HDDs act as the targets (or the responder). If all ports on the loop, including

the controller, are accorded the Fairness Access Algorithm, the controller may not be

able to obtain sufficient loop bandwidth to achieve a high level of parallelism among

the HDDs and to optimize the overall performance. For example, when the storage
Lport
Lport

Lport
Lport

Lport
Lport

Lport
Lport

Lport
Lport

Lport
LportLport

Lport

Lport
Lport

Lport
Lport

Lport
Lport

Lport
Lport

Lport
Lport

Lport
Lport

Lport
Lport

Lport
LportLport

Lport

Lport
Lport

Lport
Lport

S:

Storage
Controller

A
B
C

A
B
C

S
S
S

S
S
S

S
S
S

S
S
S

S
S
S

S
S
S

Arbitration
Open
Frame
Close
…

A:
HDD1
A:
HDD1

B:
HDD2
B:
HDD2

C:
HDD3
C:
HDD3

Figure 3.6 Command Delay with Fairness Access Algorithm

 27

Controller
win
arbitration

Controller
releases the
loop

Delay due to fairness access

Controller
issues new
arbitration

Fairness Access Window

Time

Other nodes’
accessing

…

New Window

T = ∑ (Toverhead i + Tframe x N i)
i=0

n

Figure 3.7 Command Delay Timing Model

controller transmits read commands to all HDDs, the HDDs would require some time

to prepare the requested data before transmitting data back to the storage controller.

Once a disk drive finishes with data transferring, it remains inactive unless it is given

another command. If the storage controller follows the fairness algorithm, it will have

to wait for all disk drives with pending data before being able to access the loop to

send new commands, as shown in Figure 3.6.

The delay of sending I/O commands due to the Fairness Access Algorithm may be

very long in some situations. As shown in Figure 3.7, after winning the arbitration and

gaining access to the loop, the controller needs to wait for a new access window to

send next commands. It is assumed that there are n hard disk drives that are pending

for sending read data to the controller and the reading data consists of Ni number of

2KB FC frames for each HDD . Collectively, the FC-AL overhead for HDDi i to

arbitrate and other overhead is assumed to be Toverheadi , and the time for sending a 2K

frame over a FC-AL is Tframe. The total waiting time for the controller to send a new

command can be calculated as:

 --- Equation (1) T = ∑ (Toverheadi + Tframe x N i)

i=0

n

T = ∑ (Toverheadi + Tframe x N i)
i=0

n

From Equation (1), it can be seen that delay time due to the fairness access is

proportion to the I/O size and the number of the HDDs pending for transferring the

 28

request data. For 1 G FC-AL loop, the time for transmitting a 2KB size frame is about

20 microseconds (2K/100MBps). The overhead for a HDD to send the first frame may

be assumed to be 10 microseconds. For 64KB requests, the total delays may go up to 1

millisecond, when number of HDDs is 16.

3.4 Command-First Algorithm

In view of all above-mentioned potential delays of sending I/O commands, this

thesis proposes a new schedule for FC-AL based storage system, which enables the

storage system controller to send I/O commands to storage units earlier. Firstly this

thesis proposes a Command-First frame buffer management scheme that gives a

command frame higher priority than data. Secondly, this thesis proposes to give the

controller privilege to arbitrate the loop immediately after an I/O command frame is

encountered, regardless of the rule of the Fairness Access Algorithm that prevents the

controller to arbitrate again within a same arbitration window. Finally, this thesis

proposes to send I/O commands preemptively. These measures are collectively named

as the Command-First Algorithm

DataData
DataData
DataData

DataData
DataData
DataData
DataData

CommandCommand

DataData

FIFO headFIFO head

DataData
DataData
DataData

DataData
DataData
DataData
DataData

CommandCommand

DataData

FIFO headFIFO head

CommandCommand
CommandCommand
CommandCommand

DataData
DataData
DataData

DataData

++

CommandCommand
CommandCommand
CommandCommand

DataData
DataData
DataData

DataData

++

 a) Single FIFO for both data and
command. When Command is
added, it is placed to the head.

b) Separate FIFO for command and
data. When transferring, the HBA
check the command FIFO first.

Figure 3.8 Command Frame Priority Queuing

 29

3.4.1 Command-First FIFO

In the first place, it is proposed to aggressively deliver the I/O commands in system

level queue and give the command higher priority than data. The I/O commands shall

be transferred to the destination HDD as early as possible. The HBA device driver

shall be designed with capability of handling as many I/O commands as possible. The

HBA shall give higher priority to the I/O command processing than that of the I/O data.

One immediate consideration for giving the I/O command higher priority is to

aggressively place the FCP_CMND frame in front of FCP_DATA frame in outgoing

“FIFO” buffer of the HBA, or to have a separate higher priority Command FIFO to

hold FCP_CMND frames. For the later implementation, the HBA checks the

Command FIFO first when it proceeds to transfer frame. Figure 3.8 illustrates the two

possible options.

3.4.2 Command-First Arbitration

Secondly, the proposed Command-First Algorithm allows the storage controller to

arbitrate immediately after the command is read to send. The controller checks the type

of the frame to send. If the frame is a command, the controller switches to unfair

access mode, and starts arbitration. Otherwise, the controller remains fairness

accessing. The arbitrated loop physical address (AL_PA) of the storage controller is set

to lowest value so that the controller has the highest priority of wining the arbitration,

in the case of other HDDs also arbitrate the loop.

The Command-First Algorithm differs to the pure unfair access. The FC standard

does not compulsorily regulate that all loop device must implement the Fairness

Access Algorithm. The Fairness Access Algorithm is optional for loop devices. The

standard actually recommends that the storage controller to be implemented with

unfair. However, with pure unfair access implementation, the storage controller will

 30

always have higher priority to send frames, regardless of the different frame types of

data or command. Thus the write performance will tend to be superior to the read since

the writing data are sent by the storage controller. The overall effect is likely to be

negative. In contrast, the Command-First Algorithm only transfers commands in unfair

mode and therefore the data transferring is not affected. Because the command frame

is transmitted in a single frame sequence and the size of the command frame is small,

the duration of holding the loop is short. Thus the performance penalty of delaying

other devices access will be very small.

3.4.3 Preemptive Transferring Command

Since data transfers are always either sent to or from the storage controller in a

storage system environment, it is possible for the storage controller to send CLS signal

with the intention of closing current communication with a particular HDD. When the

controller is opened for the communication, such as the I/O read in half duplex mode,

the hard disk drive might continue sending frames to complete the data-transferring

even after it has received the CLS signal from the storage controller. The performance

gains therefore may be only marginal for the case that the controller is in opened state.

However, it would be significant if the storage controller were in open state (the state

of a port that has sent OPN signal). In unfair mode, an L_Port that owns the loop has

the privilege of sending OPN signal to another port without arbitration, after sending

CLS to close current communication.

 31

3.5 Summary

The FC-AL based storage system architecture is discussed in this chapter. The I/O

operation from the storage controller to the initiator HBA is described in detail. Then

Command-First Algorithm has been proposed with three different levels of

Command-First schedule. The Command-First FIFO is to place the command ahead of

data so that the command can be sent earlier. The Command-First Arbitration is to

force the storage controller to operate in unfair mode for command frame transferring.

The preemptive command transferring is to further enforce the storage controller to

send the command.

 32

Chapter 4

SANSim and Network Storage System

Simulation Modeling

4.1 Introduction

The network storage system simulation model is a part of the SANSim developed

in Data Storage Institute. The related publication can be seen in [2],[3] and [4]. The

overall structure of the SANSim simulator is briefly introduced at the beginning of this

chapter and then the detail implementation of the FC-AL storage system is presented.

4.2 SANSim Overview

SANSim is an event-driven simulation tool for SAN that includes four main

modules: an I/O workload module, a host module, a storage network module, and a

storage system module, as shown in Figure 4.1.

The I/O workload module generates I/O request streams according to the workload

distribution characteristics and sends them to the host modules. The host module

encapsulates the I/O workload to the SCSI commands and sends them to the Host Bus

Adaptor (HBA) sub-modules. The storage network module simulates the network

connectivity, topology and communication mechanism. The FC network module

includes three sub-modules: an FC controller module, an FC switch module and an FC

communication module. The storage module maps I/O data to the storage devices.

 33

SANSim is developed in pure standard C. It has been compiled successfully both

in Windows and Linux platform. The simulator reads configuration parameters from a

user specified input file to establish the simulative SAN configuration, plots

measurement data, and stores the results in an output file after the simulation is

completed. The simulation duration and the warm-up period can be specified in the

input file as well, to control and eliminate the transient bias during the simulation. The

configuration parameters for each of the four modules are arranged orderly in the input

file. Some other constants are hard-coded in the source code.

Host

Network

FC Network IP Network

Storage

CacheHBA

RAID Ctrl

Server

Device Driver

System Bus

HBA

4.2.1 I/O Workload Module

The key function of the I/O workload module is to generate I/O request streams

according to the workload distribution characteristics and send them to the host

modules. It supports both system-traced I/O workload and synthetic (artificial) I/O

workload. The synthetic I/O workload is used in this thesis.

CompletionsRequests

I/O Workload

Clients

Clients

Clients

I/O Controller

Host

Network

FC Network IP Network

Storage

CacheHBA

RAID Ctrl

I/O Workload

Server

Device Driver

System Bus

HBA

CompletionsRequests

Clients

Clients Clients

I/O Controller

Figure 4.1 SANSim Internal Structure

 34

An I/O request is determined through five dimensions: the requested pattern, the

size distribution, the repeatability, the location distribution and the I/O operations. The

workload module is able to generate several basic different arrival patterns such as

Poisson arrivals, deterministic time intervals arrival, normal distribution arrivals and so

on. It can also generate arrival time to describe the situation where the requests arrive

in different rates following different patterns and combinations. Another capability of

the workload module is to generate repeatable requests. This scenario is used to define

a workload in which some files are more popular than others and consequently

accessed more frequently.

4.2.2 Host Module

The host module includes a device driver, a SCSI layer, a system bus, as well as

DMA module. The main function of the host module is to encapsulate the I/O

workload into the SCSI commands and sends them to the Host HBA sub-modules.

The host modules schedule the I/O requests generated by the workload model,

based on various schedule policies. These I/O requests are traced in a circular queue

and maintained as outstanding requests. The schedule policy and the number of

allowable outstanding requests are configurable during the simulation. When the

outstanding requests exceed the maximum allowable number, new arrived I/O requests

wait in the device specific queues. These waiting I/O requests may be combined

together to form a larger IO access. Performance parameters such as the access time of

each request are collected and the statistical results are printed to a file at the end of the

simulation.

The host modules maintain a separate queue for each storage device. The I/O

requests accessing a particular device will be placed in the corresponding queue. These

I/O requests in the queue are marked as either “Waiting” or “Outstanding”. The

 35

outstanding requests refer to the I/O request having been issued to the storage device.

The waiting requests are those requests that have not been scheduled. The maximum

number of outstanding requests depends on the maximum number of the concurrent

I/O requests supported by the storage device.

The host module supports a multiple-host configuration. Each host can have a

separate I/O workload module to generate I/O independent streams. There is a specific

mechanism to identify the I/O requests coming from different hosts. The storage

device being accessed respond to corresponding hosts through an identifying bit

implemented in the I/O requests data structure.

4.2.3 FC Network Module

The key function of the FC network module is to simulate the FC connectivity,

topology and communication protocol. The FC network module includes three

sub-modules: the FC controller module, the FC switch module and the FC port &

communication module, as shown in Figure 4.2. The FC controller module simulates

the FC controller behaviors of generation FC command or data frames. The FC

switch module models all the FC ports, switch architecture, and as well as the routing

and flow control. The FC port & communication module transfers FC frames between

the FC ports.

 36

4.2.3.1 FC Controller Module

The FC controller module models both initiator and target modes of the FC HBA.

The module includes three sub-modules: a bus interface, an FCP engine and a FC port.

The bus interface sub-module handles the communication between the device driver

and the controller such as DMA and interruption. The FCP engine has the

responsibility of constructing different FC frames corresponding to each sequence of

Server

Storage
SystemStorage

System

Server
Server

FC Switch

FC
Switch

FC
Switch

Storage
System

Server

Storage
SystemStorage

System
Storage
System

Server
Server

FC Switch

FC
Switch

FC
Switch

Storage
System
Storage
System

Server system

FC Host Bus Adapter

FC Switch

FC ports

FC ports

Storage system

FCP Target Controller

FC Connection

FC Connection

Server system

FC Host Bus Adapter

FC Switch

FC ports

FC ports

Storage system

FCP Target Controller

FC Connection

FC Connection

 (a) An example of FC SAN (b) Abstracted view

Bus_interface

FCP Engine

FC Port

FC Controller module

Routing

Internal Crossbar

FC Port

FC Switch module

FC Port & Communication

Frame buffer Management

FC Connection

FC Switch coreBus_interface

FCP Engine

FC Port

FC Controller module

Routing

Internal Crossbar

FC Port

FC Switch module

FC Port & Communication

Frame buffer Management

FC Connection

FC Switch core

 (c) FC network module

 Figure 4.2 Fibre Channel Network Modeling in SANSim

 37

FCP exchange. The FC port is responsible for delivering an FC frame to the

destination port on behalf of the communication module.

4.2.3.2 FC Switch Module

SANSim’s FC switch module has two sub modules: FC port, and FC switch core.

FC port supports F_Ports/FL_Ports and E_Ports. F_Ports/FL_Ports are for Host-Switch

and Device-Switch connections, and E_Ports are for Switch-Switch interconnection.

The FC_Port’s address_ID is unique and is well confined to the FC-SW-2 standard. FC

switch core is the switch’s control center for frames routing and forwarding. It contains

routing and internal cross-bar. If the destination port of requested FC frames is busy,

the incoming frames are held in the incoming buffer until they are successfully routed.

SANSim uses Dijkstra’s algorithm to compute the shortest routing path. The routing

table remains constant unless the network connectivity is changed during the

simulation. When the network configuration is changed, the switch module

re-computes the shortest path.

4.2.3.3 FC Port & Communication Module

The FC port & communication module includes a frame buffer management and

FC connection sub modules. The frame buffer management sub module handles all

management of incoming and outgoing frame buffers. The FC connection sub module

establishes a FC connection between two FC ports for frame transferring. The FC port

& communication module supports FC-AL topology that will described in detailed in

the following sections.

4.2.4 Storage Module

The main function of the storage module is to map I/O data to the storage devices.

Storage modules include modeling of the RAID array, cache management, disk drive,

 38

and RAM disk. In the event of disk failure, in a RAID system, the degraded mode and

rebuild behavior can also be modeled.

The storage module can be configured with various network interfaces through an

interface controller. The I/O requests is extracted from the received frame by the

interface controller and passed to the storage controller for accessing the attached

storage devices. The RAID controller converts a logical access to multiple device

accesses based on the RAID algorithm. The RAID can be configured to support

multiple dimension RAID arrays.

4.3 Simulation Modeling of FC-AL Storage System

The simulation model is based on discrete-event driven simulation technique and

written in C language. With the discrete-event driven technique [37], a data structure

that holds event’s timestamp, type as well as other information is used to indicate a

particular event happening at certain times. A double precision variable is used to

record a high-resolution timestamp in the simulation model so that the FC transmission

can be accurately modeled up to nanosecond level. An object or system being

simulated is represented by a set of data structures that holds the current status of the

system, and a series of actions (or functions) that will be triggered, in accordance with

the current status, by various types of event at the event occurring time. An action

being triggered by an event may change the system’s status or generate a new future

event and cause the evolution of the system.

In the remainder of this section, the implementation of FC-AL operation model is

first discussed in detail, and then the HBA model is introduced. A system level model

is necessary for conducting I/O performance simulation. Since this thesis is focusing

on the FC-AL interconnection, other system components are described in rather

 39

simplified and abstracted way. This thesis puts more attention to the integration of the

FC-AL and HBA model with the system model.

4.3.1 FC-AL Module

Although the FC-AL appears as a separate layer in FC standard, this thesis

includes related FC-0 to FC-2 functions into the FC-AL model with the aim of

providing a completed model that can be used directly by the HBA model that enables

the FCP operation. Also, since this thesis is focusing on the performance of a steady

state system, the initialization and error recovery process of the FC-AL operation are

omitted from the model.

For the purpose of description, this thesis views the FC-AL model as consisting of

four basic units: (1) the signal transmission that simulates the ordered set or frame

transmission delay over various types of physical link, (2) the loop port state machine

that adopts a simplified version of loop port state machine defined in the FC-AL

standard, which omits the initialization and error recovery process, (3) the FC-2

Alternative
BB-credit

Alternative Alternative
BBBB--credit credit

LPSMLPSMLPSM

FC-2 Signaling
and Framing

FCFC--2 Signaling 2 Signaling
and Framingand Framing

TransmissionTransmissionTransmission

LP_LP_REQsREQs

Xmit Xmit ControlControlOSesOSes

FeedbackFeedback

In
 c

om
in

g
In

 c
om

in
g

Fr
am

e
Bu

ff
er

Fr
am

e
Bu

ff
er

O
ut

 g
oi

ng
O

ut
 g

oi
ng

Fr
am

e
Bu

ff
er

Fr
am

e
Bu

ff
er

CFWCFW
Receive Receive

FibreFibre
Transmit Transmit

FibreFibre

Figure 4.3 FC-AL Simulation Model Structure

 40

signaling and framing that governs the frame transmission, and (4) the alternative BB

credit that handles the flow control. The relationships between them are illustrated in

Figure 4.3. This thesis discusses the implementation detail of each in following

subsections.

4.3.1.1 Signal Transmission

The minimum data unit transmitted in FC is the transmission word with a size of

four bytes. Some special transmission words are used as control signals, named by

Ordered Set in FC terms, such as IDLE, ARB, OPN, R_RDY, SOF, EOF and others.

The SOF and EOF are used to mark the beginning and the ending of a frame. The size

of a frame including the payload must be transmission word aligned, i.e., it is four-byte

dividable. If the user data to be packitized into a frame is not transmission word

aligned, it must be padded-up with dummy data. Based on this characteristic, the

simulation model is developed up to transmission word resolution, since the finer level

of transmission modeling does not give higher accuracy.

In the first place, the signal transmission model unit takes charge of modeling the

delay of Ordered Set (OS) and frame delivery from one port to its next. A transmission

word is transmitted as 40 serial bits after the 8bit/10bit coding. With a given parameter

of clock rate, the time to complete the transmission is determined. For an example, for

1 G FC, the clock rate is 1.0625 GHz, and thus the transmission time for a single

transmission word is about 37.65 nanoseconds (40 divided by 1.0625 G). After the bit

stream is transmitted, it takes time to travel along the fibre to reach the next port. For

fibre optic cable, this propagation delay is about 5 nanoseconds per meter. The

distance between the ports is given in the configuration parameters, and thus the

propagation delay is determined. Finally, when a port retransmits a transmission word,

an additional delay will be imposed due to the elastic buffering and it is often called

 41

per-port delay. The FC standard specifies that the per-port delay must not greater than

six transmission-words transmission time. This delay time actually gives the port a

time window to analyze the signal it received and may vary from port to port. In this

simulation model, the delay is set to be fixed of about 240 nanoseconds for 1 G media.

To sum up, the delay time of a transmission word from one port to the other can be

calculated at the beginning with the given configuration parameters.

EvEv__SendOSSendOS(A,t0)(A,t0)

Generate events: Generate events:

EvEv_CMPL__CMPL_TxTx(A, t1)(A, t1)

EvEv_OS_Arrival(B,t2) _OS_Arrival(B,t2)

Port APort A Port BPort B

Event SchedulerEvent SchedulerEvent SchedulerEvent Scheduler

EvEv_CMPL(A, t1)_CMPL(A, t1)
EvEv_OS_Arrival(B,t2)_OS_Arrival(B,t2)

t1= t0 + port_delayt1= t0 + port_delay

t2 = t1 + t2 = t1 + propagpropag_delay_delay

Figure 4.4 Signal Transmission Model

Based on the timing model described above, a discrete event module is designed

as illustrated in Figure 4.4. When simulation time reaches t0, the Ev_SendOS(A,t0)

occurs and the Port A is triggered to call the transmission model to generate

Ev_CMP_Tx(A,t1) and Ev_OS_Arrival(B,t2) events, which indicates when the data

transmission is completed and when the Port B receives the transmitted OS. These two

events will be scheduled by the event scheduler according to their time of t1 and t2,

and are fed to the corresponding port.

The above model without optimization would have serious problem regarding the

computing efficiency. The computing power required for the discrete event simulation

is directly proportion to the number of events being processed. In above model, every

transmission of one word would require at least three events. For a 2 KB frame, it

would require 1536 events (2048 Bytes / 4 Bytes * 3). Moreover, there are always

 42

transmission words traveling on the loop to maintain the FC link. For every one second,

it would require about 26.6 million transmissions (1.0625 x 109 / 40), or about 80

million events. This is too time-consuming and computing expensive. A method is

used to solve this problem by implementing “edge-change” simulation, to greatly

reduce the number of transaction without losing accuracy.

With the “edge-change” method, every port on the loop records the type and the

time of the word being transmitted, marked as CTW (current transmitting word) and

CTT(current transmitting time). When a new transmission is issued, the type of new

transmission word is checked with the CTW type. If they are same, the transmission is

discarded but the CTT is updated. Otherwise, both CTW and CTT are updated and the

transmission word is delivered to the next port. For a frame, the model does not

distinguish the transmission words between the SOF and EOF and consider from SOF

to EOF an unchanged signal. Thus, a frame transmission requires only two

“edge-changes”, one from CFW (current fill words) to SOF, the other is EOF to CFW.

With this method, no other transmission words other than the OSes are required.

Additionally, since the state transition of the Loop Port State Machine (LPSM) are

CRWCRW
CRTCRT

CTWCTW
CTTCTT

CRW: current receiving word
CRT: time of start receiving CRW
CTW: current transmitting word
CTT: time of start xmiting CTW
CFW: current fill word

Pseudo Process to Pseudo Process to
trigger OStrigger OS

L_PortL_PortL_Port

CFWCFW

UpdateUpdate UpdateUpdate

CRWCRW
CRTCRT

CTWCTW
CTTCTT

CRW: current receiving word
CRT: time of start receiving CRW
CTW: current transmitting word
CTT: time of start xmiting CTW
CFW: current fill word

Pseudo Process to Pseudo Process to
trigger OStrigger OS

L_PortL_PortL_Port

CFWCFW

UpdateUpdate UpdateUpdate

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

Frame dataFrame dataSOFSOF EOFEOF

OS1OS1 OS2OS2

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

ChangeChange
EdgeEdge

Frame dataFrame dataSOFSOF EOFEOF

OS1OS1 OS2OS2

Figure 4.5 “Edge-Change” Simulation Techniques

 43

often driven by the receiving OSes, it is also critical to maintain a pair of CRW

(current receiving word) and CRT(current receiving time). A pseudo process is

designed to generate the receiving signal based on the CRW and CRT when it is

needed. The “Edge-Change” technique discussed is illustrated in Figure 4.5.

The above discussion provides evidence that high accuracy may be achieved with

limited computing power by using the proper modeling method. Other techniques such

as clock alignment handling method are omitted from this discussion.

4.3.1.2 Loop Port State Machine

The Loop Port State Machine (LPSM) defines the behavior of an L_Port, and is

used to gain access to other L_Ports. Since the model is focusing on the steady state

performance, for the purpose of simplicity, only a sub set of the state transition logic is

modeled. The states associated with the initialization and error recovery process,

namely the Initializing, Old-Port and Open-Init states, are omitted from the model. As

show in Figure 4.6, the LPSM module models the remaining eight possible states that

an L_Port might possibly transit to and from during normal steady state operation.

With no exception from the basic method of discrete-event driven modeling, the

model defines a set of necessary control and status variables in the fields of the L_Port

data structure to hold the current status of the L_Port with regard to the LPSM

operation. In addition to that, a set of functions is developed to process input events

based on the current status and the given event type, according to the LPSM logic

defined in the standard. Corresponding to the real world’s input of the LPSM, two

basic types of events are defined to trigger the state transitions: the loop port request

arrival events and the ordered set arrival events. The loop port requests are issued by

the FC-2 signaling and framing model to command the L_Port to perform certain

 44

activity, while the OS arrival events are fed by the signal transmission module upon

reception of an OS.

It is worth mentioning that the Fairness Access Algorithm is naturally included in

the LPSM logic. As specified in the standard, each fairness-access L_Port uses several

history variables and controls to determine the start and the end of a fairness access

window. Within a same fairness access window, the LPSM of an L_Port will not

transit to Arbitrating state again until all conditions are satisfied (corresponding to the

fairness access window’s being reset). The comprehensive description of the LPSM

model is omitted in this thesis. Rather, a simple example of three L_Ports (labeled as

port A, port B and port C) configuration is used to illustrate the LPSM operation in the

remainder of this subsection.

Assume that all three ports start from Monitoring state and a loop port request of

Req(arb_own) is issued to port A. Since port A has not arbitrated before, the Fairness

Access Algorithm does not prevent port A to transit from Monitoring to Arbitrating

Monitoring[0]

Arbitrating[1]

Arbitration
Won [2]

Transmitted
Close[5]

Received
Close[6]

REQ(arb own)

Rcved own ARB

Xmit OPN

Rcved CLS

Rcved OPN

XmitCLS

Xmit CLS

Transfer[7]

Open[3]

Opened[4]

REQ(OPN) REQ(MON)

REQ(TRANS)+XmitCLS

Rcved OPN

Rcved
CLS

Xmit CLS

Rcved CLS

ARB_PEND=1

Monitoring[0]

Arbitrating[1]

Arbitration
Won [2]

Transmitted
Close[5]

Transmitted
Close[5]

Received
Close[6]

REQ(arb own)

Rcved own ARB

Xmit OPN

Rcved CLS

Rcved OPN

XmitCLS

Xmit CLS

Transfer[7]

Open[3]

Opened[4]Opened[4]

REQ(OPN) REQ(MON)

REQ(TRANS)+XmitCLS

Rcved OPN

Rcved
CLS

Xmit CLS

Rcved CLS

ARB_PEND=1

Figure 4.6 Loop Port State Machine

 45

state. Port A then keeps transmitting the ARB(A) when it is in Arbitrating state. Since

port B and C are in the Monitoring state, they retransmit the ARB(A) signal. Port A

hence receives its own ARB(A), and transits to Arbitration_Won state. The FC-2

signaling and framing model is notified of the arbitration winning and Req(OPN) is

issued for frame transferring. An OPN with parameter of destination port address, say

the address of port C, is transmitted by port A and the port transits to Open state. While

port A is in Open state, it will not retransmit any OS received from its receive fibre

over to its transmit fibre. The CFW or other control OSes are used to fill the gap of

frame transmission. The control of the frame transmission is then passed to the FC-2

signaling and framing model to determine when is the proper time to send frames. On

the other hand, port B retransmits the OPN signal and remains in Monitoring state,

while port C recognizes its address’s match with the destination address carried by the

OPN signal and transits to Opened state from Monitoring. Similar to port A in Open

state, port C does not retransmit OS received from receive fibre over to transmit fibre

and the control is passed to FC-2 signaling and framing model. Thus, the

communication channel is established between port A and port C. If the

communication is in full duplex mode, which is determined by the OPN signal, port C

may send frames to port A while it receives frames. After all frames are transferred or

due to other reasons, either the Open port (A) or the Opened port (C) may receive loop

port request of REQ(Close). The LPSM then triggers the port to transmit CLS signal

and transit to Transmitted Close state upon completion of sending the CLS. When a

port is in Transmitted Close state, it is not allowed to transmit frames again although it

may continue to receive frames. Port B forwards the CLS to the other party of the

communication, being the Open port or the Opened port. Upon reception of this CLS

signal, the port transits to Received Close state. While in the Received Close state, the

 46

port may continue to send frames until all frames are transmitted or up to the

buffer-credit’s limit. It is noted that the opposite port does not transmit any more

buffer-credits after it is in Transmitted Close state. The Received Close port then

transmits CLS and transits back to Monitoring state and the Transmitted Close port

consequently follows when it receives the CLS if there is no arbitration request

pending. Otherwise, it transits to Arbitrating state directly to perform the arbitration.

Finally, the Transfer state is discussed to mark the end of this example. It is

assumed that port A has an additional task to send a frame to port B and its

communication with port C remains unchanged as in previous description. Upon

completion of the task with port C, port A receives REQ(Transfer) from FC-2

signaling and framing model and thus it transits to Transfer state after the CLS is sent.

Port A, in Transfer state, will eventually receive CLS signal from port C and the FC-2

signaling and framing model is informed. A REQ(OPN) is then issued since it has a

remaining task to deal with port B, other than a REQ(MON) is issued which causes

transition from Transfer to Monitoring. As the REQ(OPN) is received, port A sends

OPN with destination address of port B and transits to Open state. And thus, the

arbitration is saved for the second task. It is noted that the Transfer state is only

available in the unfair access mode.

4.3.1.3 FC-2 Signaling and Framing

The FC-2 signaling and framing module take over the control of an L_Port for

frame transferring after the communication channel has been established between the

Open and Opened port pair. It is assumed that the outgoing frames are constructed

on-the-fly by other functions of the HBA model and they are placed in the outgoing

frame buffer and ready for transferring. It is further assumed that the conditional

checking and other computing overhead associated with the FC-2 Signaling and

 47

Framing are sufficiently small and negligible. The HBA overheads such as command

execution are defined separately in the HBA model unit.

Since the frames can only be sent in Open state, or possibly in Opened or

Received Close states for full duplex cases, or Received Close state transited from

Open state for half duplex, three different functions are developed to simulate the

control behavior. Nevertheless, the three functions have similar control logic. They

must determine if there are waiting frames in the outgoing frame buffer that are

heading to the connected port, if the six ordered-sets frame gap is satisfied, if the credit

is available, and other conditions before sending a frame. If it is ready to send a frame,

the control instructs the signal transmission unit to send the SOF signal and then

determines when to send EOF signal based on the frame size and the processes shall

not send any other Signal during the frame transmission. In between the frame, they

must also determine when to send exactly one R_RDY for a newly available incoming

frame buffer slot and separate the consecutive two R_RDYs signal with at least two

CFWs. When there is no more frame to send, the control shall issue loop port request

of REQ(Close) to the LPSM for closing current connection. From the above

description, it can be seen that the control actions are dependent on the complex

combination of conditions and the conditions are change rapidly as the simulation

progresses. To increase the efficiency, the control function is developed as a virtual

process, which may be activated from sleep state by certain events, e.g. a frame is

newly en-queued to the outgoing frame buffer, or a received frame is de-queued from

the incoming frame buffer to make the buffer slot available; or transit from active to

sleep state when frame sending conditions are unforeseeable.

 48

4.3.1.4 Alternative Buffer-to-Buffer Flow Control

The alternative buffer-to-buffer is used on a FC-AL loop to ensure that the source

port does not send frames more than the number of available frame buffer slots that the

destination port has. The alternative buffer-to-buffer flow control differs to the

standard buffer-to-buffer flow control. With standard buffer-to-buffer flow control in

point-to-point or Fabric topology, the two communication parties establish BB_Credit

over each other after initialization login process. The partnership between the

communication pair in this case remains fairly static at “one-to-one”. It is therefore

safe for the standard buffer-to-buffer flow control to make use of BB_Credit to check

if the port is in credit for sending frame. When a frame is sent, the BB_Credit

decrements by one and when an R_RDY is received, the BB_Credit increments by one.

As long as the BB_Credit is greater than zero, the frame can be safely sent. In contrast,

the BB_Creidt is not directly applicable to a FC-AL loop. An L_Port may be opened

by various other L_Ports over time and the BB_Credit can no longer reflect the latest

available buffer space of the destination port that has just been opened by another

L_Port.

Differing to the standard BB Credit, FC-AL uses an “alternative” buffer-to-buffer

flow control. During loop initialization, each L_Port advertises its own LoginBBCredit

that guarantees the number of buffer slots available, and records other ports’

LoginBBCredit. After that, when an L_Port opens or is opened for communication, it

looks up its record for the opposite port’s LoginBBCredit. If the LoginBBCredit is

greater than zero, the port can start sending frames up to that number at the beginning

phase. During this phase, the R_RDYs received are discarded up to the equal number

of LoginBBCredit to make the credit balance. When more R_RDYs are received, the

port records the additional credits. After the LoginBBCredit is fully used and equal

 49

number of R_RDY has been discarded, the second phase begins. By then, the port

maintains the credit in the way similar to the standard buffer-to-buffer flow control.

OK to OK to
Send Send

FrameFrame

PreCreditUsageCountPreCreditUsageCount := :=
PreCreditUsageCountPreCreditUsageCount +1+1

PreCreditUsageCountPreCreditUsageCount
== == LoginBBCreditLoginBBCredit

Frame SentFrame Sent

Not OK Not OK
to Send to Send
FrameFrame

BBCreditCountBBCreditCount:= :=
BBCreditCountBBCreditCount--11

Not OKNot OK
to Send to Send
FrameFrame

BBCreditCountBBCreditCount:= :=
BBCreditCountBBCreditCount+1+1

BBCreditCountBBCreditCount
== == LoginBBCreditLoginBBCredit

OK to OK to
Send Send

FrameFrame

Frame SentFrame Sent

RdyDiscRdyDisc==0 ==0

RdyDiscRdyDisc:= :=
RdyDiscRdyDisc--11

NoNo

YesYes

RdyDiscRdyDisc==0 ==0

BBCreditCountBBCreditCount:= :=
BBCreditCountBBCreditCount--11

RdyDiscRdyDisc:= :=
RdyDiscRdyDisc--11

NoNo

YesYes

YesYesNoNo

ConnectionConnection
EstablishedEstablished

LoginBBCreditLoginBBCredit
==0==0

BBCreditCountBBCreditCount:=:=LoginBBCreditLoginBBCredit;;
PreCreditUsageCountPreCreditUsageCount=0;=0;

RdyDiscRdyDisc:=:=LoginBBCreditLoginBBCredit;;

R_RDYR_RDY R_RDYR_RDY

R_RDYR_RDY

R_RDYR_RDY

YesYes

NoNo

YesYes
NoNo

OK to OK to
Send Send

FrameFrame

PreCreditUsageCountPreCreditUsageCount := :=
PreCreditUsageCountPreCreditUsageCount +1+1

PreCreditUsageCountPreCreditUsageCount
== == LoginBBCreditLoginBBCredit

PreCreditUsageCountPreCreditUsageCount
== == LoginBBCreditLoginBBCredit

Frame SentFrame Sent

Not OK Not OK
to Send to Send
FrameFrame

BBCreditCountBBCreditCount:= :=
BBCreditCountBBCreditCount--11

Not OKNot OK
to Send to Send
FrameFrame

BBCreditCountBBCreditCount:= :=
BBCreditCountBBCreditCount+1+1

BBCreditCountBBCreditCount
== == LoginBBCreditLoginBBCredit

BBCreditCountBBCreditCount
== == LoginBBCreditLoginBBCredit

OK to OK to
Send Send

FrameFrame

Frame SentFrame Sent

RdyDiscRdyDisc==0 ==0 RdyDiscRdyDisc==0 ==0

RdyDiscRdyDisc:= :=
RdyDiscRdyDisc--11

NoNo

YesYes

RdyDiscRdyDisc==0 ==0 RdyDiscRdyDisc==0 ==0

BBCreditCountBBCreditCount:= :=
BBCreditCountBBCreditCount--11

RdyDiscRdyDisc:= :=
RdyDiscRdyDisc--11

NoNo

YesYes

YesYesNoNo

ConnectionConnection
EstablishedEstablished
ConnectionConnection
EstablishedEstablished

LoginBBCreditLoginBBCredit
==0==0

LoginBBCreditLoginBBCredit
==0==0

BBCreditCountBBCreditCount:=:=LoginBBCreditLoginBBCredit;;
PreCreditUsageCountPreCreditUsageCount=0;=0;

RdyDiscRdyDisc:=:=LoginBBCreditLoginBBCredit;;

R_RDYR_RDY R_RDYR_RDY

R_RDYR_RDY

R_RDYR_RDY

YesYes

NoNo

YesYes
NoNo

Figure 4.7 Alternative Buffer-To-Buffer Flow Control

The Alternative Buffer-to-Buffer Flow Control logic is implemented as in Figure

4.7. Two types of event are used in the diagram, the “R_RDY” indicating the event

that a R_RDY is received and the “Frame Sent” indicating the event that a frame has

just been sent. The control could be in either “OK to Send Frame” or “Not OK to Send

Frame” states and transits from left-hand side of the beginning phase to the right hand

side of the continue phase. Three control variables are initialized when a

communication channel is established: the BBCreditCount is assigned with the

LoginBBCredit; the PreCreditUsedCount that is used to count the number

LoginBBCredit that has been used is set to zero; and the RdyDisc that indicates the

remaining number of R_RDY to be discarded is assigned with the LoginBBCredit.

From then on, the control reacts to the event for changing the value of those control

variables or transits to different states.

 50

OpenOpen

OpenedOpened

Transmitted CloseTransmitted Close

ReceivedReceived
CloseClose

Delay forDelay for BBCredit BBCredit

Delay for Delay for BBCreditBBCredit

Monitoring orMonitoring or
ArbitratingArbitrating

Monitoring orMonitoring or
ArbitratingArbitrating

Port Port
AA

PortPort
BB

CLSCLS CLSCLS

(a) Open port transmits CLS to transit to Transmitted Close state

OpenedOpened

OpenOpen

Transmitted CloseTransmitted Close

ReceivedReceived
CloseClose

Delay forDelay for BBCredit BBCredit

Delay for Delay for BBCreditBBCredit

Monitoring orMonitoring or
ArbitratingArbitrating

Monitoring orMonitoring or
ArbitratingArbitrating

Port Port
AA

PortPort
BB

CLSCLS CLSCLS

(b) Opened port transmits CLS to transit to Transmitted Close state

OpenOpen

OpenedOpened

TransferTransfer

ReceivedReceived
CloseClose

Delay forDelay for BBCredit BBCredit

Delay for Delay for BBCreditBBCredit

Monitoring orMonitoring or
OpenOpen

Monitoring orMonitoring or
ArbitratingArbitrating

Port Port
AA

PortPort
BB

CLSCLS CLSCLS

(c) Opened port transmits CLS to transit to Transfer state

Figure 4.8 State Transition Delay for Alternative BB Credit

To guarantee a non-zero LoginBBCredit number of available space in its incoming

frame buffer, an L_Port may need to delay some of its LPSM state transition. If the

L_Port is the Open port and has transited to Transmitted Close state after sending CLS,

it shall make sure it has enough free space in the buffer before it transits to Monitoring

or Arbitrating state upon receiving CLS from the opposite port. If the free buffer space

is not sufficient, the port waits until enough frames are processed and removed from

the incoming frame buffer. Similarly, for an Open port that has transited to Transfer

 51

state, it should ensure enough free buffer space before it transits to Open state again or

to Monitoring state upon receiving CLS. For an L_Port that is in Received Close

state, it also needs to ensure the free buffer space before it transmits CLS signal,

regardless if it is the Open port or the Opened port. The last scenario is that an

L_Port in the Opened state wishes to close the communication. The L_Port needs to

ensure the guaranteed free buffer space as well but it needs to consider the credits that

have been given to the opposite port for the reason that the opposite port may continue

transferring frame upon those credits. It may choose to inform the FC-2 signaling and

framing unit to stop sending R_RDY, otherwise it may never get enough space which

is being guaranteed for the next communication. Figure 4.8 illustrates the timing

diagram for the above three different situations.

4.3.2 FC HBA Module

The FC HBA module simulates the behavior of the FC host adapter used in a

storage system, as the FCP Initiator, and the HDD interface, as the FCP Target. For

simplicity, the FCP Target is assumed to have identical internal structure to the FCP

HBA model
initiator mode

The rest of storage controller

HBA model
target mode

FCP_CMND

FCP_DATA

FCP_DATA

FCP_RSP

FCP_XFER_RDY

...

The rest of HDD’s controller

Bus_interface

NL_Port

DMA

Frame Mgr

FCP Engine for
initiator

Bus_interface

NL_Port

DMA

Frame Mgr

FCP Engine for
initiator

Signal Transmission UnitSignal Transmission Unit

Bus_interface

NL_Port

DMA

Frame Mgr

FCP Engine for
target

Bus_interface

NL_Port

DMA

Frame Mgr

FCP Engine for
target

Figure 4.9 FC HBA Model Structure

 52

Initiator except the FCP processing engine, as shown in Figure 4.9. Overall, the HBA

module consists of several function sets such as bus interface, DMA, FCP engine,

frame manager and the L_Port model developed in the previous section, corresponding

to the HBA’s internal basic operation. The signal transmission unit models the

connection between the FCP Initiator and the FCP Target. The internal structure of

the model in FCP Initiator mode and FCP Target mode are described as following.

4.3.2.1 FCP Operation Protocol

The FCP protocol maps each SCSI I/O into one FCP I/O Exchange that consists of

several FC sequences corresponding to each SCSI command and data transferring

phase. Four types of FCP Information Unit (FCP IU) are defined for SCSI read and write

transactions, namely FCP_CMND, FCP_DATA, FCP_XFER_RDY and FCP_RSP.

These FCP IUs are packed together with the directive frame headers into FC frames and

transferred in sequences. As their names imply, the FCP_CMND carries a SCSI I/O

FCP Initiator FCP Initiator FCP Target FCP Target

FCP_CMNDFCP_CMND

FCP_XFER_RDYFCP_XFER_RDY

FCP_DATAFCP_DATA

FCP_RSPFCP_RSP

Command Command
PhasePhase

Data Data
PhasePhase

Status Status
PhasePhase

Single Frame Single Frame
Command Command
SequenceSequence

Single or Single or
Multiple Frame Multiple Frame

Sequence, Sequence,

or Multiple or Multiple
SequencesSequences

Single Frame Single Frame
SequenceSequence

FCP Write I/O ExchangeFCP Write I/O Exchange

FCP_DATAFCP_DATA……

FCP_XFER_RDYFCP_XFER_RDY

FCP_DATAFCP_DATA

FCP_DATAFCP_DATA……

FCP Initiator FCP Initiator FCP Target FCP Target

FCP_CMNDFCP_CMND

FCP_XFER_RDYFCP_XFER_RDY

FCP_DATAFCP_DATA

FCP_RSPFCP_RSP

Command Command
PhasePhase

Data Data
PhasePhase

Status Status
PhasePhase

Single Frame Single Frame
Command Command
SequenceSequence

Single or Single or
Multiple Frame Multiple Frame

Sequence, Sequence,

or Multiple or Multiple
SequencesSequences

Single Frame Single Frame
SequenceSequence

FCP Write I/O ExchangeFCP Write I/O Exchange

FCP_DATAFCP_DATA……

FCP_XFER_RDYFCP_XFER_RDY

FCP_DATAFCP_DATA

FCP_DATAFCP_DATA……

FCP Initiator FCP Initiator FCP Target FCP Target

FCP_CMNDFCP_CMND

FCP_DATAFCP_DATA

FCP_DATAFCP_DATA

FCP_DATAFCP_DATA

FCP_RSPFCP_RSP

Command Command
PhasePhase

Data Data
PhasePhase

Status Status
PhasePhase

Single Frame Single Frame
Command Command
SequenceSequence

Single or Single or
Multiple Frame Multiple Frame

Sequence, or Sequence, or

Multiple Multiple
SequencesSequences

Single Frame Single Frame
SequenceSequence

FCP Read I/O ExchangeFCP Read I/O Exchange

……

FCP Initiator FCP Initiator FCP Target FCP Target

FCP_CMNDFCP_CMND

FCP_DATAFCP_DATA

FCP_DATAFCP_DATA

FCP_DATAFCP_DATA

FCP_RSPFCP_RSP

Command Command
PhasePhase

Data Data
PhasePhase

Status Status
PhasePhase

Single Frame Single Frame
Command Command
SequenceSequence

Single or Single or
Multiple Frame Multiple Frame

Sequence, or Sequence, or

Multiple Multiple
SequencesSequences

Single Frame Single Frame
SequenceSequence

FCP Read I/O ExchangeFCP Read I/O Exchange

……

Figure 4.10 FCP I/O Operation Protocol

 53

Command; the FCP_DATA is used to transfer data; the FCP_XFER_RDY indicates

that the target is ready to receive a certain amount of data; and the FCP_RSP reports

the completion status of the SCSI I/O. The FCP_CMND is issued from an FCP

Initiator to an FCP Target.

The FCP protocol for SCSI read or write transaction is illustrated in Figure 4.10.

As shown in the diagram, both read or write operations can be divided into in three

phases: the command phase, the data phase and the status phase. During the command

phase, the FCP Initiator initiates the I/O by sending FCP_CMND in a single frame

sequence to the FCP target. Upon reception of FCP_CMND, the FCP Target prepares

the requested data for read, or allocates data buffer to receive requested data for write.

After the read data, or the data buffer for write is ready, the data phase starts. For read,

the FCP target sends the requested data in one or more FCP_DATAs. Depending on

various implementations, the FCP Target may prepare the requested read data in

multiple parts, one after the other, and having a time space in between. In such cases,

the FCP_DATAs may be sent in multiple data sequences. For write, the FCP Target

sends FCP_XFER_RDY with a parameter of FCP_BURST_LEN specifying the size of

the writing data buffer. The FCP Initiator then sends one or more FCP_DATAs up to

the size of FCP_BURST_LEN given in the FCP_XFER_RDY received. If the write

I/O size is greater than the FCP_BURST_LEN, additional FCP_XFER_RDYs is

required after the FCP Initiator fully transmits all FCP_DATA requested by previous

FCP_XFER_RDY. After all requested data are transferred, the transaction comes to

the status phase. The FCP Target finally generates the FCP_RSP and sends it to the

FCP Initiator in a Single Frame Sequence.

 54

4.3.2.2 FCP Initiator Mode

Figure 4.11 shows the functional block diagram of the HBA module in FCP

Initiator mode. The FCP Main Processor receives HBA commands or other short

control messages through the Interrupt & Messenger from the Bus Interface. After

interpretation, the FCP Main Processor recognizes that an I/O command is issued. It

then takes some time to allocate necessary resource. After completion, it issues a

DMA_REQ into DMA Queue to fetch the I/O information from the host system (not

shown in the diagram) through the Bus Interface by the DMA Transfer. The DMA

Scheduler de-queues one entry from DMA Queue based on various disciplines, such as

Round Robin, First-Come-First-Serve (FCFS) or other. The DMA Transfer is then

instructed to DMA the requested I/O information from the host system. The DMA

Transfer supports bidirectional transfer, i.e., both from and to the host system. Once

the complete I/O information is retrieved, the FCP Main Processor is informed and the

Outgoing Frame Construction is commanded to build the FCP_CMND frame that

Single
Frame

Transfer

Single Single
Frame Frame

TransferTransfer

DMA
Scheduler
DMA DMA

SchedulerScheduler

Outgoing
Frame

Construction

Outgoing Outgoing
Frame Frame

ConstructionConstruction

Incoming
Frame Queue

Process

Incoming Incoming
Frame Queue Frame Queue

ProcessProcess

Incoming Incoming
Frame FIFOFrame FIFODMA QueueDMA Queue

Outgoing Outgoing
Frame FIFOFrame FIFO

SFT QueueSFT Queue

FCP_CMNDFCP_CMND
FCP_DATAFCP_DATA

DMA_REQDMA_REQ

FCP_DATAFCP_DATA

FCP_RSP FCP_RSP

Bus InterfaceBus InterfaceBus Interface

DMA TransferDMA TransferDMA Transfer Interrupt and
Messenger

Interrupt and Interrupt and
MessengerMessenger

FCP Main
Processor

FCP Main FCP Main
ProcessorProcessor

L_Port ModelL_Port Model

FCP_XFER_RDYFCP_XFER_RDY

Figure 4.11 FCP Initiator Mode HBA Model Structure

 55

carries the SCSI I/O command and places it into the Outgoing Frame FIFO through the

interface provided by the L_Port model.

When an FC frame is received in the Incoming Frame FIFO, the Incoming Frame

Queue Process is activated, if it is in sleep, to process the incoming frames. Once

activated, the Incoming Frame Queue Process continues processing until the FIFO is

empty. It analyzes the frame retrieved from the Incoming Frame FIFO through the

L_Port model interface. The FCP_DATA frames are de-encapsulated and placed in

DMA Queue for DMA transfer, while frames with other types are directed to the SFT

Queue to be transferred to the designated host system memory location through Single

Frame Transfer. Since this thesis is focusing on steady-state modeling, it is assumed

that only FCP_RSP frames are transferred in this mode. In the case of

In-Order-Delivery, the FCP_RSP shall be received after all requested data has been

transferred. The Single Frame Transfer handles the SFT Queue in FCFS order and

informs the FCP Main Processor upon completion. An interrupt is then issued through

the Interrupt & Messenger to inform the host system to process the FCP_RSP that

indicates the completion of an I/O. For FCP write, the FCP_XFER_RDY received is

passed to the FCP Main Processor for handling data transfer. DMA requests are

generated to transfer the writing data from the host system memory. The Outgoing

Frame Construction then, with assistance of FCP Main Process, encapsulates the data

fetched by the DMA Transfer into FCP_DATA frames that are placed into the

Outgoing Frame FIFO.

4.3.2.3 FCP Target Mode

The functional block diagram of the HBA module in FCP Target mode is shown in

Figure 4.12. It can be seen that the FCP Target Mode HBA module has identical

internal bocks to the FCP Initiator mode. It is noted that the FC interface may be

 56

tightly connected to the disk controller through other means in an actual FC hard disk

drive. However, since the model supports simulation-time configuration, this means

that the model can be configured with various parameter when simulation starts, such

as using zero overhead of command execution to eliminate some non-actual-exist

function, thus it still be able to model the HDD’s interface function.

In FCP Target Mode, when FCP_CMND frames are received in the Incoming

Frame FIFO, the Incoming Frame Queue places them into the SFT Queue to be

transferred to the HDD controller (not shown in the diagram) through Single Frame

Transfer. The HDD controller then executes the SCSI command embeded in

FCP_CMND. If it is a read, the requested data is read from the media (HDA) and

placed in read buffer. Otherwise, enough free buffer space is allocated for writing data.

After completion, the HDD controller informs the FCP Main Processor through the

Interrupt & Messenger. For read, the FCP Main Processor then issues DMA requests

and places the data in DMA queue to be handled by the DMA Scheduler to transfer

Single
Frame

Transfer

Single Single
Frame Frame

TransferTransfer

DMA
Scheduler
DMA DMA

SchedulerScheduler

Outgoing
Frame

Construction

Outgoing Outgoing
Frame Frame

ConstructionConstruction

Incoming
Frame Queue

Process

Incoming Incoming
Frame Queue Frame Queue

ProcessProcess

Incoming Incoming
Frame FIFOFrame FIFODMA QueueDMA Queue

Outgoing Outgoing
Frame FIFOFrame FIFO

SFT QueueSFT Queue

FCP_RSP FCP_RSP
FCP_DATA FCP_DATA
FCP_XFER_RDYFCP_XFER_RDY

DMA_REQDMA_REQ

FCP_DATAFCP_DATA

FCP_CMNDFCP_CMND

Bus InterfaceBus InterfaceBus Interface

DMA TransferDMA TransferDMA Transfer Interrupt and
Messenger

Interrupt and Interrupt and
MessengerMessenger

FCP Main
Processor

FCP Main FCP Main
ProcessorProcessor

L_Port ModelL_Port Model

Figure 4.12 FCP Target Mode HBA Model Structure

 57

read data from the read buffer. The read data is then en-capsulated into FCP_DATA

frames to be placed into the Outgoing Frame FIFO by the Outgoing Frame

Construction. When data transfer is completed, an FCP_RSP frame is generated and

placed into the Outgoing Frame FIFO indicating the I/O has been completed. For

write, the FCP Main Proessor assists the Outgoing Frame Construciton to build the

FCP_XFER_RDY frame based on the informaiton received from the HDD controller,

and places it into the Outgoing Frame FIFO. When FCP_DATA is received, it is

DMAed to the write buffer that has been allocated. If the last FCP_DATA requested

by a FCP_XFER_RDY is received but more data is writing, the HDD controller is

informed to allocate additional write buffer. A new FCP_XFER_RDY is then

contructed and placed in the Outgoing Frame FIFO. Otherwise, if all data has been

received, an FCP_RSP is generated and en-queued to the Outgoing Frame FIFO to

indicate the completion of the write.

4.3.3 HBA Device Driver Module

Before a system model can be established, two more components module, the

device driver for the Initiator HBA and the hard disk drive firmware function are

developed to simulate the I/O behavior of the rest of the systems that communicate

with the HBAs through system bus. After these additional two components are

presented, all corresponding component modules can then integrated into the system

model.

 58

4.3.3.1 FC HBA Initiator Device Driver

For simplification, the FC HBA Initiator device driver is modeled as shown in

Figure 4.13. I/O requests are submitted to the device driver model through the arrival

queue. The Arrival Process takes some time to establish all required data structure,

such as the I/O request package for holding the information of the I/O request. After

completion, the request package is then en-queued in the I/O Request Information

Queue that physically holds the I/O information in host system memory. The

information of the I/O arrival is sent through the Message Passing to the HBA model.

The HBA retrieves the I/O request package through DMA from the I/O Request Info

Queue, and processes the I/O request. During data phase, the HBA model may fetch

data from the Write Buffer, or send data to the Read Buffer. After completion of data

transfer, the HBA model notifies the HBA device driver through interrupt indicating

HBA Initiator Device DriverHBA Initiator Device Driver

Write Write
BufferBuffer

Read Read
BufferBuffer

Interrupt Interrupt
HandlingHandling

Message Message
PassingPassing

Completion Completion
ProcessProcess

Arrival Arrival
ProcessProcess

Bus InterfaceBus InterfaceBus Interface

I/O Request I/O Request
Info QueueInfo Queue

Completion Completion
Info QueueInfo Queue

HBA Initiator Device DriverHBA Initiator Device Driver

Write Write
BufferBuffer

Read Read
BufferBuffer

Interrupt Interrupt
HandlingHandling

Message Message
PassingPassing

Completion Completion
ProcessProcess

Arrival Arrival
ProcessProcess

Bus InterfaceBus InterfaceBus Interface

I/O Request I/O Request
Info QueueInfo Queue

Completion Completion
Info QueueInfo Queue

Figure 4.13 FC HBA Device Driver Model

 59

that some I/Os have been completed, and the completion messages are available in the

Completion Info Queue. The Completion Process examines the I/O completion status

in the Completion Info Queue and reports the completion.

SCSI CMNDSCSI CMND
WRITE_DATAWRITE_DATA

End of End of
Buffer Buffer

End of End of
WriteWrite

Buffer Buffer
AllocAlloc

Media Media
AccessAccess

ReadyReady

Write Write
BufferBuffer

Status Status
GenGen

ReadReadWriteWrite

Response_MessageResponse_Message

Hard Disk Driver Firmware FunctionHard Disk Driver Firmware Function

ReadyReady ReadyReady ReadyReady

Buffer Buffer
AllocAlloc Read Read

BufferBuffer

Media Media
ReadRead

Media Media
WriteWrite

READ_DATAREAD_DATA

Bus InterfaceBus InterfaceBus Interface

Figure 4.14 HDD Firmware Function Model

4.3.3.2 Hard Disk Drive Firmware for FC Interface

The HDD firmware function with regard to the FC target interface is modeled as

shown in Figure 4.14. Detailed description of the model is omitted in this thesis.

4.3.4 Model Integration

Since this thesis is aiming at the system level I/O performance, it is required to

integrate the component models into a system model. Figure 4.15 shows an example of

the system model consisting of a workload Generator to generate certain pattern I/O

workload, a storage controller hosting an FCP Initiator HBA Device Driver, an FCP

Initiator HBA model attached to the HBA device driver through the I/O bus, and three

FCP Targets interfacing to each attached HDD. I/O requests generated by the workload

generator arrive at the storage controller for execution. The storage controller

schedules and submits corresponding internal I/O requests to the HBA Device Driver.

 60

The FCP Initiator HBA then initiates FCP I/O operations for these internal I/O requests.

The FCP Target, with support from HDD controller, response to those FCP I/O

operations.

Workload Workload
GeneratorGenerator

Storage ControllerStorage Controller

HBA Device DriverHBA Device Driver

L_PortL_Port
FCPFCP

DMADMA

L_
Po

rt
L_

Po
rt

FC
P

FC
P

D
M

A
D

M
A

L_
Po

rt
L_

Po
rt

FC
P

FC
P

D
M

A
D

M
A

H
D

D
 F

irm
w

ar
e

H
D

D
 F

irm
w

ar
e

I/F
 fu

nc
tio

n
I/F

 fu
nc

tio
n

HDD controllerHDD controller

FCP Initiator HBA moduleFCP Initiator HBA module

L_
Po

rt
L_

Po
rt

FC
P

FC
P

D
M

A
D

M
A

L_
Po

rt
L_

Po
rt

FC
P

FC
P

D
M

A
D

M
A

H
D

D
 F

irm
w

ar
e

H
D

D
 F

irm
w

ar
e

I/F
 fu

nc
tio

n
I/F

 fu
nc

tio
n

L_
Po

rt
L_

Po
rt

FC
P

FC
P

D
M

A
D

M
A

L_
Po

rt
L_

Po
rt

FC
P

FC
P

D
M

A
D

M
A

H
D

D
 F

irm
w

ar
e

H
D

D
 F

irm
w

ar
e

I/F
 fu

nc
tio

n
I/F

 fu
nc

tio
n

FCP TargetFCP Target

HDAHDA

HDAHDA

HDAHDA

BusBus

Figure 4.15 System Level Integration

4.4 Summary

This chapter has implemented a set of simulation models for FC-AL based storage

system in the way of “bottom-up” developing approach. The transmission level

modeling is first introduced, and then the L_Port’s functionalities are simulated. After

the L_Port model is ready, the FCP HBA model is developed. Lastly, the system level

model is established and ready for validation. .

 61

Chapter 5

Calibration and Validation

5.1 Transmission Calibrations

In order to calibrate the FC-AL model, the Finisar GTX-P1000 Fibre Channel

Analyzer has been used to track the actual communication between a host system and

the storage target. As shown in Figure 5.1, the FC analyzer logically sets two monitors

to watch different directional traffics on the two transmission links. The traffic

monitors are so designed that they do not interfere with the original communication, in

the way of “signal coupling”, instead of copy. The transmissions can be recorded and

stored in memory buffer, up to the pre-defined size. When the tracking end time is

reached, the recording is stopped. The analyzer software then generates a time-stamped

event list according to the raw data and presents them in various formats. A number of

traces under different I/O workload pattern have been produced using the analyzer.

Port 1
Monitor

Port 1 Port 1
MonitorMonitor

Port 2
Monitor

Port 2 Port 2
MonitorMonitor

RXRX
TXTX
RXRX
TXTX

TXTX
RXRX
TXTX
RXRX

RXRX
TXTX
RXRX
TXTX

TXTX
RXRX

HBAHBA TXTX
RXRX
TXTX
RXRX

HBAHBA FCFC--AL AL
interfaceinterface

JBODJBOD

Host SystemHost System

FinisarFinisar FC AnalyzerFC Analyzer

Port 1 eventsPort 1 events

Port 2 eventsPort 2 events

Port 1 eventsPort 1 events

Port 2 eventsPort 2 events

Figure 5.1 Finisar GTX-P1000 Analyzer Logical Configuration

 62

These traces are in the format of readable plain text. Each event in the trace starts

with a nanosecond-resolution time stamp that indicates the beginning time of the

transmission, followed by a record of multiple same ordered sets or a frame

transmitted during the past period of time. The time difference between previous event

and current event with the same port (port 1 or port 2) is also given. If the transmission

are Ordered Sets, the OS type with parameter such as OPN (x,y), and the OS counts

are presented. If it is a frame, the FCP type and frame size as well as other frame

header information are abstracted. Figure 5.2 shows a segment of a trace in such

format.

hhh:mm.ss.ms_us_ns DT/Port Port Count OS Size RCtl
000:00:00.998_306_903 0.217 FC_Port 2 1 CLS 4
000:00:00.998_306_941 0.038 FC_Port 2 1021 Idle 4
000:00:00.998_307_533 40.208 FC_Port 1 1 CLS 4
000:00:00.998_307_571 0.038 FC_Port 1 1013 Idle 4
000:00:00.998_345_378 38.438 FC_Port 2 39 ARB(E1,E1) 4
000:00:00.998_345_708 38.138 FC_Port 1 41 ARB(E1,E1) 4
000:00:00.998_346_856 1.478 FC_Port 2 1 OPN(E2,E1) 4
000:00:00.998_346_894 0.038 FC_Port 2 3 ARB(F0,F0) 4
000:00:00.998_347_006 0.112 FC_Port 2 1 R_Rdy 4
000:00:00.998_347_044 0.038 FC_Port 2 2 ARB(F0,F0) 4
000:00:00.998_347_119 0.075 FC_Port 2 1 R_Rdy 4
000:00:00.998_347_157 0.038 FC_Port 2 2 ARB(F0,F0) 4
000:00:00.998_347_232 0.075 FC_Port 2 1 R_Rdy 4
000:00:00.998_347_261 1.553 FC_Port 1 2 ARB(F0,F0) 4
000:00:00.998_347_269 0.038 FC_Port 2 2 ARB(F0,F0) 4
000:00:00.998_347_336 0.075 FC_Port 1 1 R_Rdy 4
000:00:00.998_347_345 0.075 FC_Port 2 1 R_Rdy 4
000:00:00.998_347_374 0.038 FC_Port 1 38 ARB(F0,F0) 4
000:00:00.998_347_382 0.038 FC_Port 2 28 ARB(F0,F0) 4
000:00:00.998_348_408 1.026 FC_Port 2 5 Idle 4
000:00:00.998_348_626 0.218 FC_Port 2 1 SOFi3 60 FC4Status
000:00:00.998_348_776 1.402 FC_Port 1 28 Idle 4
000:00:00.998_349_191 0.565 FC_Port 2 6 Idle 4
000:00:00.998_349_406 0.215 FC_Port 2 1 CLS 4
000:00:00.998_349_444 0.038 FC_Port 2 3235 Idle 4
000:00:00.998_349_848 1.073 FC_Port 1 1 R_Rdy 4
000:00:00.998_349_886 0.038 FC_Port 1 6 Idle 4
000:00:00.998_350_104 0.217 FC_Port 1 1 CLS 4
000:00:00.998_350_141 0.038 FC_Port 1 3186 Idle 4
000:00:00.998_470_105 119.964 FC_Port 1 39 ARB(E2,E2) 4
000:00:00.998_471_215 121.771 FC_Port 2 41 ARB(E2,E2) 4

Figure 5.2 Fibre Channel Analyzer Trace Format

 63

During the model-debugging period, these traces are used from time to time to

calibrate the timing. Various kinds of software event watchers are developed in the

models and can be turn on during compile-time to produce a simulative event trace.

Figure 5.3 shows an example of port watcher’s result. It has similar content to an

actual trace as shown in Figure 5.2. The port watcher also prints the LPSM state of the

L_Port at event occurring time. Through examining these events, the correctness of the

protocol implemented in the simulation models is validated. For some examples, the

six-ordered-sets-gaps requirement between frames is fulfilled; the R_RDY, OPN, CLS

and other signals are sent only once; the R_RDYs are transmitted with the rule of at

least two fill words prior-to and following-by; the logic of LPSM state transition is

verified; the Alternative BB credit flow control logic is tested; and the FCP transaction

protocol is evidenced.

These traces are also analyzed to achieve some necessary configuration

information that is used in later system level validation, such as the frame buffer count

time:4.881436,portID:1,state:3,cnt:70 ::ARB(01,01)::=>::OPN(00,01)::
time:4.881474,portID:1,state:3,cnt:1 ::OPN(00,01)::=>::ARB(F0,F0)::
time:4.881664,portID:1,state:3,cnt:5 ::ARB(F0,F0)::=>::R_RDY:::::::
time:4.881702,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::SOFi3:DATA::
time:4.901462,portID:1,state:3,cnt:520 ::SOFi3:DATA::=>::EOFn3:::::::
time:4.901500,portID:1,state:3,cnt:1 ::EOFn3:::::::=>::IDLE::::::::
time:4.901576,portID:1,state:3,cnt:2 ::IDLE::::::::=>::R_RDY:::::::
time:4.901614,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::IDLE::::::::
time:4.901690,portID:1,state:3,cnt:2 ::IDLE::::::::=>::R_RDY:::::::
time:4.901728,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::SOFi3:DATA::
time:4.921488,portID:1,state:3,cnt:520 ::SOFi3:DATA::=>::EOFn3:::::::
time:4.921526,portID:1,state:3,cnt:1 ::EOFn3:::::::=>::IDLE::::::::
time:4.921602,portID:1,state:3,cnt:2 ::IDLE::::::::=>::R_RDY:::::::
time:4.921640,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::IDLE::::::::
time:4.921716,portID:1,state:3,cnt:2 ::IDLE::::::::=>::R_RDY:::::::
time:4.921754,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::SOFi3:DATA::
time:4.941514,portID:1,state:3,cnt:520 ::SOFi3:DATA::=>::EOFn3:::::::
time:4.941552,portID:1,state:3,cnt:1 ::EOFn3:::::::=>::IDLE::::::::
time:4.941628,portID:1,state:3,cnt:2 ::IDLE::::::::=>::R_RDY:::::::
time:4.941666,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::IDLE::::::::
time:4.941742,portID:1,state:3,cnt:2 ::IDLE::::::::=>::R_RDY:::::::
time:4.941780,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::SOFi3:CMND::
time:4.942350,portID:1,state:3,cnt:15 ::SOFi3:CMND::=>::EOFn3:::::::
time:4.942388,portID:1,state:3,cnt:1 ::EOFn3:::::::=>::IDLE::::::::
time:4.942464,portID:1,state:3,cnt:2 ::IDLE::::::::=>::R_RDY:::::::
time:4.942502,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::IDLE::::::::
time:4.942578,portID:1,state:3,cnt:2 ::IDLE::::::::=>::R_RDY:::::::
time:4.942616,portID:1,state:3,cnt:1 ::R_RDY:::::::=>::SOFi3:CMND::

Figure 5.3 Simulative L_Port Event Trace

 64

of the initiator HBA or the target FC hard disk, the command execution overhead of

the initiator or the host, the status generation time. These parameters in many cases

may become some performance bottleneck, and may dominate the I/O performance.

For example, the initiator HBA command execution time may determine the maximum

I/O throughput for small access.

5.2 Trends Confirmation

In order to confirm and verify the simulation model’s overall correctness, a series

of simulations have been conducted, with some basic performance factors changing

while others keep constant, so that the overall trend of the FC-AL performance can be

achieved. High accuracy of most hardware overheads in these simulations is not

required, since this thesis is focusing on the changing trends.

The close-system I/O workload is used in these and succeeding simulations. As

shown in Figure 4.19, the workload generator initially generates number “n” of I/Os

that will simultaneously enter the I/O subsystem under test. The execution order of

Initial I/O
Generation
Initial I/O

Generation
I/O subsystem

under test

I/O
Generator

I/O
Generator

I/O 1
I/O 2
I/O…
I/O n

I/O xI/O n++

I/O
Arrival I/O Completion

and Departure

n of I/Os are closed in the
system to be execute.

Figure 5.4 Close-system I/O Workload

 65

these I/Os is up to the I/O subsystem, either concurrently or sequentially or in-between.

When any one I/O completes, it departs from the I/O subsystem and triggers the I/O

generator to generate a new I/O that will enter the subsystem again quickly.

Subsequently, there are always number “n” of I/Os existing in the I/O subsystem. With

greater number “n”, the subsystem will be more deeply explored for parallelism. This

is probably the reason why the “n” is often instead called “queue-depth” in I/O

performance measurements.

The remainder of this section presents the simulation results for a number of cases.

Firstly, the simulation result of two nodes configuration (one initiator and one target)

with short physical distance are presented. The factors of read or write, queue-depth

and the I/O sizes are considered. Secondly, the effect of number of nodes in the loop is

discussed. With more nodes attached, the overall round trip time becomes longer and

the performance shall degrade in some level. Thirdly, the effect of large physical

distance is investigated.

5.2.1 Performance of One-to-one Configuration

This subsection evaluates the simulation model for handling general performance

simulation on a one-to-one simple configuration (one initiator to one target and no

other passive port). The HBA overheads for command execution are set to small to

simplify the analysis. The FC link rate is set to one gigabit per second and the

alternative buffer to buffer credit flow control with one LoginBBCredit is supported.

The full duplex function is turned on. The HDD access time is configured to small so

that the data can be transferred quickly, while the maximum concurrent I/O requests

supported by the HDD is set to four. The closed-system I/O workload is used with

various queue-depths.

 66

When queue depth is one, the simulated throughput grows and approaches to the

maximum bandwidth of 100 MB/s as the I/O size increases, since the weight of the

system overhead per I/O request over the data transfer time significantly decreases

when I/O size changes from small to large. The system or the FC-AL protocol

overhead causes some idle periods before and after the frame transfer and the fraction

of idle periods to the frame transferring determines a lower than 100% bandwidth

utilization. For example, when I/O size is 2 KB, one single data frame is used for data

transfer and every I/O, subsequently every data frame, will impose certain idle periods.

When I/O size is 1 MB, hundreds of frames (512) may be transferred in a continuous

chunk. The system overhead imposes only certain idle before and after this chunk of

frames transfer. The overhead are shared by 512 frames. Therefore, the bandwidth

utilization increases and the throughputs surges up, approaching to the maximum

bandwidth. The maximum achievable throughput however are always smaller than the

nominate 100 MB/s, regardless read, write or the mixtures I/O types, since there is

only one I/O in processing in any time for one queue depth and there is no chance to

transfer both read and write data in the two directions. In other word, the full duplex

potential is not explored. It is also noted that the write throughput is generally lower

than the read in the simulation, because the write requires the additional phase of

FCP_XFER_RDY. The mixture of read and write (50% read and 66% read in the

simulations) has the combination effect of the read and writes, which is worse than the

read but better than the write.

When queue-depth increases, multiple I/Os are executed in parallel and so the

bandwidth utilization increases. The throughput improvement is expected since the

system overhead is shared among these I/Os. Meanwhile, for the I/O workload with

combination of read and write, concurrent I/Os can achieve higher than 100 MB/s

 67

throughput with full duplex when I/O is large. Figure 5.5 shows the simulation

results of the data throughput when the queue depth is 2 and 32, for four types of I/O

workload with I/O size changing from 0.5 KB to 512 KB. It can be seen that the small

read and write mixture I/O does not achieve much throughput gain when queue depth

is two. The possible reason is that the probability of the small read I/O overlapping

with the small write I/O is small and the full duplexing is hardly possible. However,

when the queue depth changes to 32, the overlapping probability significantly

increases and thus mixture type of I/O can achieve significant improvement, as seen in

(b) of Figure 5.5. Meanwhile, when I/O size is large, it is always possible to find the

overlapping period, since the devices can support multiple request concurrently. The

mixture I/O thus achieves better performance than pure read and pure write for queue

depth 2 (Figure 5.5 (a)), and even better for queue depth 32 (Figure 5.5 (b)) It is also

noted that the 66% read I/O achieves slightly higher throughput than 50% read I/O

when queue depth is 32. This is probably due to the slightly longer write execution

time and more read I/Os are required to get better overlapping.

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

I/O Size (KB)
(a) Queue Depth = 2 (b) Queue Depth = 32

I/O Size (KB)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

0.5 1 2 4 8 16 32 64 128 256 512

Pure Read
Pure Write
50%Read
66% Read

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

0.5 1 2 4 8 16 32 64 128 256 512

Pure Read
Pure Write
50%Read
66% Read

Figure 5.5 FC-AL Throughputs with Two Nodes Configuration

The effect of queue depth can be seen clearly in Figure 5.6 for all four types of I/O

workload. For pure read (a) and pure write (b), with deeper queue-depth up to four,

 68

the small I/Os achieve significant throughput improvements, since the system overhead

dominates the small I/O performance, while the large I/Os hardly gain better

performance because the link utilization is already high. In contrast, the 50% read (c)

and 66% read (d) achieve significant performance improvement for both small and

large I/Os because of the concurrency and the full duplexing. However, the

throughputs do not further increase after queue depth four, since the HDD used

supports only four maximum concurrent I/Os.

0
10
20
30
40
50
60
70
80
90

100
110
120

0.5 1 2 4 8 16 32 64 128 256 512

QD=1 QD=2
QD=4 QD=8
QD=16 QD=32

0
10
20
30
40
50
60
70
80
90

100
110
120

0.5 1 2 4 8 16 32 64 128 256 512

QD=1 QD=2
QD=4 QD=8
QD=16 QD=32

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

0.5 1 2 4 8 16 32 64 128 256 512

QD=1 QD=2
QD=4 QD=8
QD=16 QD=32

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140

0.5 1 2 4 8 16 32 64 128 256 512

QD=1 QD=2
QD=4 QD=8
QD=16 QD=32

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

(a) Pure Read (b) Pure Write

(c) 50% Read (c) 66% Read

I/O Size (KB) I/O Size (KB)

I/O Size (KB) I/O Size (KB)

Figure 5.6 Queue Depth Effect with Two Nodes Configuration

To sum up, the results obtained from the simulation model for this example follow

the expectation in general, for various workload types with different queue depths,

from small I/O to large I/O. The proper modeling on the full duplex feature is proved

and the I/O execution process is tested.

 69

5.2.2 Effect of Number of Node

According to the standard, each port in a FC-AL loop is allowed to delay signal

retransmission for six transmission words. This delay is referred as “per-port delay”.

With 1 gigabit per second link rate, the per-port delay may up to 226 nanoseconds

(6*40/1.0625). As node number increases, the overall delay increases. The simulation

model for this delay effect is verified in this sub section.

It is assumed that there is only one initiator and one target in the loop, while the

remaining nodes participate only in signal retransmission. The other I/O overheads are

set small for better focus. The closed-system I/O workload is used with queue-depth

equals to one. The total node number in the loop changes from 2 to 126. The response

time growing trend as node number increase is investigated first, followed by a

discussion on the performance improvement by increasing incoming frame buffer size

and implementing non-zero LoginBBCredit.

As described in earlier chapter, the I/O requests are executed in multiple phases

according to the FCAL protocol. Table 5.1 presents an analysis on read I/O phases and

corresponding loop latencies required for the case of one incoming frame buffer and

Table 5.1 Read Transaction Loop Latency IncomingBuffer=1, LoginBBCredit=0

I/O Phases 2k 4k 8k 16k 32k 64k 128k

1 1 1 1 1 1 1 Arb1
1 1 1 1 1 1 1 CMD Credit

0.5 0.5 0.5 0.5 0.5 0.5 0.5 CMD Deliver
1 1 1 1 1 1 1 Arb2
1 2 4 8 16 32 64 Data Credit
1 1 1 1 1 1 1 RSP Credit

0.5 0.5 0.5 0.5 0.5 0.5 0.5 RSP deliver
Total 6 7 9 13 21 37 69

1355 1581 2033 2936 4744 8358 15586 ΔT/ΔN (ns)

Simulation 1355.28 1581.16 2032.91 2936.48 4743.54 8357.61 15585.97

 70

zero LoginBBCredit. To start a read I/O, the initiator first arbitrates and wins the loop

access (Arb1), requiring one round trip signal transferring (from sending its own ARB

to receiving the same ARB). After winning the loop, the initiator sends OPN but can

not send the FCP_CMND frame immediately because of zero LoginBBCredit. It takes

half round of loop traveling for the OPN to reach the target (assuming that the target is

located in the middle of the loop trip but it is not essentially necessary), and the target

send a credit back to the initiator after receiving OPN. Therefore, the initiator spends

one whole round trip to gain the credit to send the I/O command. The command frame

takes half round trip to reach the target. After the target receive the command, it spends

some time to execute the command but the time is not related to the loop latency and is

not affected by the node number. It is therefore excluded from the analysis. This is also

applicable to other overheads. When the data is ready, the target has to arbitrate and

win the loop (Arb2) taking one whole loop latency. It is noted that there are no other

arbitrators in the example, and that the target can hold the loop for all subsequent

frame transferring. In other word, no additional arbitration is required fro the data

transferring. Moreover, with assumption that the status frame is generated quickly

enough, the status frame is appended to the data frame sequence. However, there are

crediting loop latencies for each frame transferring. Due to zero LoginBBCredit, the

target takes one loop-latency to obtain the credit for sending the first data frame. Since

the incoming buffer is one, there is only one credit sent by the initiator. The target

therefore has to wait for a new credit that is only received after the initiator receives

the first frame (half loop latency since the target complete sending the first frame) and

sends back the credit in another half loop latency, before it can send another frame.

Therefore, when I/O size is 128 KB, there are total 64 round-trip loop latencies for the

crediting (assuming frame size is 2KB). Last but not least, the status frame (RSP)

 71

requires additional round to obtain the credit and another half round to reach the

initiator to mark the completion of the I/O. The total rounds of loop latency required

for various I/O sizes therefore can be obtained as in the table. Since each increment of

node number cost additional 226 nanoseconds to the loop latency, the total increase of

the I/O response time can be determined.

0
10
20
30
40
50
60
70
80
90

100
110
120

0 20 40 60 80 100 120

2K 4K
8K 16K
32K 64K
128K

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

Node Number

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120

2K 4K
8K 16K
32K 64K
128K

R
es

po
ns

e
Ti

m
e

(m
s)

Node Number
(a) Data Throughput (b) Response Time

Figure 5.7 Effect of Number of Nodes

The corresponding simulations are conducted to confirm the simulation model

with the above analysis. Figure 5.7 shows the simulation result of data throughput and

response time when node number increase, for read I/O with different size from 2KB

to 128KB. Since the queue depth is one, the data throughput equals to the I/O size

Equation 5.1 Throughput declines slowly as node number increases:

 72

divided by the I/O response time. The data throughput therefore declines when node

number increase, since the response time linearly grows. Equation 5.1 gives the data

throughput degradation function as the node number increases. It can be seen that the

throughput declines more slowly as the node number become larger. It is also note that

the response time increase faster when I/O size is large. The response times for each

I/O size and corresponding node number are measured and the growing speeds per

node number increment are calculated. As shown in last row of Table 5.1, the

simulation accurately agrees with the analysis results.

For the write I/O, the I/O transaction phases differ to the read. The target arbitrates

the loop and sends the XFER_RDY frame to the initiator after receiving I/O command.

The initiator then arbitrates the loop and transfers data with crediting overhead for each

data frame. The last data frame takes half loop latency to reach the target. The target

then arbitrates the loop to send the status and the I/O is complete when the RSP is

received by the initiator with half loop latency. Table 5.2 summaries the loop latency

analysis for the write with same assumption of one incoming buffer and zero

 Table 5.2 Write Transaction Loop Latency IncomingBuffer=1, LoginBBCredit=0

I/O Phases 2k 4k 8k 16k 32k 64k 128k
1 1 1 1 1 1 1 Arb1
1 1 1 1 1 1 1 CMD Credit

0.5 0.5 0.5 0.5 0.5 0.5 0.5 CMD Deliver
1 1 1 1 1 1 1 Arb2
1 1 1 1 1 1 1 XFER Credit

0.5 0.5 0.5 0.5 0.5 0.5 0.5 XFER Deliver
1 1 1 1 1 1 1 Arb3
1 2 4 8 16 32 64 DATA Credit

0.5 0.5 0.5 0.5 0.5 0.5 0.5 Data Deliver
0 0 0 0 0 0 0 Arb4
1 1 1 1 1 1 1 RSP Credit

0.5 0.5 0.5 0.5 0.5 0.5 0.5 RSP deliver
Total 8 9 11 15 23 39 71

1807 2033 2485 3388 5195 8809 16038 ΔT/ΔN (ns)

Simulation 1807.06 2032.94 2484.71 3388.24 5195.29 8809.41 16037.65

 73

LoginBBCredit. A set of simulations are conducted and the response time growing

speed per node number increment are presented in the last row of the table, which are

accurately matching the analysis result.

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

4K Read
4K Write
2K Read
2K Write

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 20 40 60 80 100 120

4K Read
4K Write
2K Read
2K Write

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

128K Read
128K Write

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120

128K Read
128K Write

(a) Small I/O Performance comparison for Read and Write

(b) Large I/O Performance comparison for Read and Write

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

R
es

po
ns

e
Ti

m
e

(m
s)

Node Number Node Number

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

R
es

po
ns

e
Ti

m
e

(m
s)

Node Number Node Number

Figure 5.8 Small I/O Read/Write Comparisons for Node Number Effect

Apparently, the node number increase has greater effect on the write than that on

the read. Figure 5.8 shows the simulation result of data throughput and I/O response

time for the comparison of the read and the write when I/O size is small in (a) and

large in (b), with node number increasing from 2 to 126. As shown, the small write

performance decline much noticeably from read comparing to the large I/O. This is

because the weigh of the loop latency overhead to the data transferring is much smaller

for large I/O. For 128K request, the total data transfer time is 1.25 milliseconds

(128KB divided by 100MB/s), while the total loop latency difference between the read

 74

and the write is about 0.5 microseconds only. Therefore, the large write is only

marginally worse than the large read for the performance degradation caused by node

number increment.

From the above loop latency analysis, it is clear that the performance can be

improved by eliminating the loop latencies required for crediting. Two options are

considered. One way is to equip more incoming frame buffers to the port, so that the

frame can be sent continuously. The other supplemental way is to make the

loginBBCredit non-zero, so that the port can transfer frame immediately after winning

the arbitration.

Figure 5.9 presents the simulation results of data throughput for small (2KB

read) and large (12KB read) I/Os, for the node number effect when various incoming

frame buffer number and non-zero loginBBCredit are applied. As shown in (a), where

I/O is small and loginBBCredit remains zero, the performance is noticeably improved

when incoming buffer changes from one to two. No further improvment is achieved

when incoming buffer increase further to three or four, since there is at maximum only

two frames (one data frame and one status frame for 2KB I/O) to send and only one

crediting loop latency is saved for the second frame. By contrast, when the I/O is large,

two incoming frame buffers improve throughput tremendously as shown in figure (b).

At 60 nodes, the throughput degradation from 2 nodes for two incoming frame buffer

is only about one tenth of that for one incoming frame buffer. The reason is that the

two incoming frame buffer make it possible to transfer all data frames continuously. In

such case, the first frame is sent after the first credit is received and by the time of

transferring completion, the second credit shall already be received and the second

frame can be sent. On the other hand, the first frame takes half loop latency to reach

destination port and a new credit is sent back in half loop latency. The new credit

 75

therefore will reach the frame sender in one loop latency and if and only if it arrives

earlier than the completion of the second frame transferring, the third frame can be sent

continuously. That is the reason why the data throughput falls at about 90 nodes, where

the loop latency is about 20.34 microseconds (90*224) exceeding 2KB frame

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80 100 120

inb=4,loginbb=0
inb=3,loginbb=0
inb=2,loginbb=0
inb=1,loginbb=0

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80 100 120

inb=4,loginbb=1
inb=3,loginbb=1
inb=2,loginbb=1
inb=1,loginbb=1

0
5

10
15
20
25
30
35
40
45
50

0 20 40 60 80 100 120

inb=4,loginbb=1
inb=4,loginbb=2
inb=4,loginbb=3
inb=4,loginbb=4

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

inb=4,loginbb=0
inb=3,loginbb=0
inb=2,loginbb=0
inb=1,loginbb=0

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

inb=1,loginbb=1
inb=2,loginbb=1
inb=3,loginbb=1
inb=4,loginbb=1

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100 120

inb=4,loginbb=1
inb=4,loginbb=2
inb=4,loginbb=3
inb=4,loginbb=4

(a) 2K Read with zero LoginBBCredit (b) 128K Read with zero LoginBBCredit

(c) 2K Read with one LoginBBCredit (d) 128K Read with one LoginBBCredit

(e) 2K Read with more LoginBBCredit (f) 128K Read with more LoginBBCredit

Node NumberNode Number

Node NumberNode Number

Node NumberNode Number

Figure 5.9 Sufficient Buffering to Improve Performance
 (All vertical axis measure the data throughput in MB/s)

 76

transferring time (19.58 microseconds). When incoming buffer is three, the new credit

will always arrive earlier than two frames transferring for all possible node number

(2-127), and thus data frames can be sent continuously. Four incoming buffer serves no

better than three. Comparing (c) to (a) and (d) to (b), if non-zero LoginBBCredit is

implemented, the performance is further improved for both small and large I/Os, since

the port can send frame without the initial crediting latency. If incoming frame buffer

is sufficient, one LoginBBCredit can eliminate the initial crediting latency when node

number is smaller than 90. After that, a small waiting time is required to receive the

new credit after the first frame is sent and this time has only minor effect on the overall

throughput and even hardly noticeable when I/O is large, as shown in (e) and (f).

From above analysis, it is save to conclude that the configuration with three

incoming frame buffers and one LoginBBCredit can sufficiently support large loop up

to the maximum 127 nodes. However, the loop latency still increases as more nodes

are added and cause performance degradation since the protocol require some

minimum round-trip communications. Figure 5.10 plots the throughput and I/O

response time for the case of three incoming frame buffers and one LoginBBCredit, as

a comparison to Figure 5.7. It can be seen that the degradation are greatly reduced and

all I/O sizes has same response time growing speed in Figure 5.10, which means no

additional overhead are required for large I/O.

To sum up, the simulation model are accurately developed in term of port delay,

the I/O transaction protocol is properly modeled and the alternative buffer to buffer

flow control is correctly implemented.

 77

(a) Data Throughput Effect of Number of Nodes

(b) Response Time Effect of Number of Nodes

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Node Number

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
) A 128K

64K

32K
16K
8K
4K

2K

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Node Number

R
es

po
ns

e
Ti

m
e

(m
s) 128K

64K
32K

16K
8K

4K
2K

 Figure 5.10 Effect of Number of Node with Optimal Buffering

5.2.3 Effect of Physical Distance

The signal propagation delay for long physical distance may become significant

enough to greatly degrade the I/O performance. Figure 5.11 shows the simulation

results obtained from the simulation model for the effect of long distance transfer.

 78

0
20
40
60
80

100
120
140
160
180
200

2k 4k 8k 16k 32k 64k 128k 256k 512k 1m

100m
5km
10km
50km
100km
200km

0
20
40
60
80

100
120
140
160
180
200

2k 4k 8k 16k 32k 64k 128k 256k 512k 1m

100m
5km
10km
50km
100km
200km

0
20
40
60
80

100
120
140
160
180
200

2k 4k 8k 16k 32k 64k 128k 256k 512k 1m

100m 5km
10km 50km
100km 200km

0
20
40
60
80

100
120
140
160
180
200

2k 4k 8k 16k 32k 64k 128k 256k 512k 1m

100m 5km
10km 50km
100km 200km

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

(a) Read, QD=1

(c) Read, QD=32 (c) Write, QD=32

I/O Size (Byte)

I/O Size (Byte)

I/O Size (Byte)

I/O Size (Byte)

(b) Write,QD=1

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

(a) Read, QD=1

(c) Read, QD=32 (c) Write, QD=32

I/O Size (Byte)

I/O Size (Byte)

I/O Size (Byte)

I/O Size (Byte)

(b) Write,QD=1

Figure 5.11 Effect of Physical Distance

As can be seen, the throughput degrades tremendously when the physical distance

extends from 100 meters to 100 kilometers. This is probably due to two problems.

Firstly, the long distance causes a large round trip time for an L_Port to send and

received signals for loop communication. For optical cables, one single round trip time

reaches about 0.5 milliseconds for 100 kilometers loop distance. Since each I/O

requires minimum three loop round trips (arbitrating, send OPN and receive first

R_RDY, send and receive CLS), the minimum time require is 1.5 milliseconds, which

results in less than 700 IOPS and 1.4 MB/s for 2 KB I/O when queue depth is one.

Secondly, the performance degradation for large I/O may be probably also due to

insufficient frame buffer for the BB credit flow control. With 2 gigabit per second FC

link rate, one 2K FC frame is transmitted in 10 microseconds. When I/O size is 2 M,

 79

the total transmission time is about 10 milliseconds (1024 frames * 10 microseconds

per frames). With sufficient incoming frame buffer, the bandwidth utilization can be

calculated as 10/(10+1.5) and results in over 85%. The achievable throughput therefore

shall still be about 170 MB/s. This does not happen because the port being simulated

does not have enough incoming frame buffer. The frame sending port has to wait for

R_RDY to come when the credits are used up.

With the same 100 kilometers distance example, it will take 10 microseconds to

transmit one 2 KB frame from the first bit to the last bit, and 0.25 milliseconds

(assuming the destination port is in the middle of the round trip) for the last bit of the

frame to reach the destination. Assuming that the destination port takes little time to

clear the buffer, it sends back an R_RDY immediately when it receives the frame. The

R_RDY then reaches the source port in 0.25 milliseconds. The total time from the

beginning of frame sending to the time when the source port receives the

corresponding R_RDY is thus about 0.51 milliseconds. During this period, the source

port may receive several other R_RDYs, together with the remaining credits after the

one used for sending the frame. If and only if all these add-up is greater than 51

(0.51/0.01), the source port is possibly continuously transmitting frames. Hence, total

52 incoming frame buffers are required for fully utilizing the transmission bandwidth.

However, the port being simulated has only four incoming frame buffers in this

example, which is far less than the required. After every four transmission, the port has

to wait for 0.47 milliseconds (0.51-0.04). The bandwidth utilization can thus go low to

about 8.5%, which results in about 18 MB/s data throughput. The simulation results

 80

shown in Figure 5.10 agree with the above analysis. Therefore, the degree of the model

validity is further improved.

5.3 Actual Testing and Simulation Comparison

The simulation model so far has been verified in transmission levels by using the FC

analyzer and confirmed on the general performance trends, by comparing simulation

result with general analysis. In order to further validate the model, an actual system

experiment is conducted in this section to compare the actual measurement with the

simulation result.

5.3.1 Experimental Environment

The experiments are conducted on a FC-AL configuration with one window’s

initiator and one FC RAM disk target. Two Qlogic 2300 FC HBAs are used to support

the 2 Gigabit FC, one for the initiator and the other for the target. Microsoft Window

Table 5.3 Experimental System Configuration

 Initiator Target
Hardware CPU: AMD AthonMP 1600+ CPU: Intel PIII 1GHz

FC HBA: Qlogic 2300 FC HBA: Qlogic 2300
RAM: 2x256MB DDR
SDRAM

RAM: 4 x 1GB Kingston ECC
Reg. PC133
Mainboard: 64bit PCI, Supermicro
370

Mainboard: 64 bit PCI Tyan
Tiger MP2466N

OS: RedHat 8.0 Kernel: 2.4.18 Software OS: Windows XP Professional

SP1 Driver: In-house 2300 target
driver Ver 1.0, Driver: Qlogic Driver Version

8.1.5.12 In-house Linux FC RAM Disk Ver
2.0 Tool: Intel IOMeter

Version2003.02.15

 81

XP is installed on the initiator system together with the HBA initiator device driver to

drive the HBA. The target HBA is installed on a Linux system that is configured to be

a virtual HDD using DSI’s FC RAM Disk software. The software maps all storage I/O

to the memory rather than to an actual magnetic disk. Since this thesis is focusing more

on the FC-AL connection, using RAM disk as a target helps to isolate problems from

modeling of actual hard disk drive. Table 5.3 gives the detail hardware and software

configurations in the experiments.

The I/O Meter [40], widely used in the industry, is installed on the initiator system

to conduct the experimental test and measurement. After the system is boot-up, the

virtual hard disk appears in the window system as a “physical raw disk” and is ready to

be tested by the I/O Meter. The “physical raw disk” test bypasses the file system

overhead for better focusing. The I/O Meter typically supports the closed-system

workload, with specifiable parameters of queue-depth, I/O size, fraction of read and

others. The software also allows specifying a “warm-up” time to eliminate the transient

period of the test, as well as the testing duration in which the I/O statistics are collected.

The simulation sets 10 minutes for the warm-up and another 30 minutes for the data

collection in each test. Since the RAM DISK responses very fast and it will complete

1,800 I/Os for 2 MB request in 30 minutes and many times more for smaller I/O size.

This will give sufficient sample space for the confidence of the measurement.

The simulation measures the system’s data throughput (MB/s) and I/O throughput

(IOPS) with I/O size changing logarithmically from 2 KB to 512 KB, queue-depth

 82

linearly from 1 to 12 for both read and write. The obtained measurements are recorded

and compared with the corresponding simulation results.

Depth=1

Depth=2

Depth=8 .

.

0
2
4
6
8

10
12
14
16
18
20
22
24
26

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k
Request Size

I/
O

s P
er

 S
ec

on
d

(k
)

Maximum IOPS vs. Request Size (Read)

Simulated

Tested

.

.

0

20

40

60

80

100

120

140

160

180

200

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k
Request Size

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Depth=1

Depth=
2

Depth=8

Throughput vs. Request Size (Read)

Simulated

Tested

Figure 5.12 Read Experiments Comparisons

Depth=1

Depth=2

Depth=8

.

.

0
2
4
6
8

10
12
14
16
18
20
22
24
26

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k
Request Size

I/
O

s P
er

 S
ec

on
d

(k
)

Maximum IOPS vs. Request Size (Write)

Simulated

Tested

.

.

0

20

40

60

80

100

120

140

160

180

200

1k 2k 4k 8k 16k 32k 64k 128k 256k 512k
Request Size

T
hr

ou
gh

pu
t (

M
B

/S
ec

)

Depth=1

Depth=2

Depth=8

Throughput vs. Request Size (Write)

Simulated

Tested

Figure 5.13 Write Experiments Comparisons

.

.

2KB

8KB

16KB

32KB

0
2
4
6
8

10
12
14
16
18
20
22
24
26

1 2 3 4 5 6 7 8 9 10 11 12
Queue Depth

I/
O

s P
er

 S
ec

on
d

(K
) Simulated

Tested

Maximum IOPS vs. Queue Depth (Read)

.
2KB

.

8KB

16KB

32KB

0
2
4
6
8

10
12
14
16
18
20
22
24
26

1 2 3 4 5 6 7 8 9 10 11 12
Queue Depth

I/
O

s P
er

 S
ec

on
d

(K
)

Simulate

Tested

Maximum IOPS vs. Queue Depth (Write)

Figure 5.14 Queue Depth Effect Experiment Comparisons

 83

5.3.2 Result Comparisons

Figure 5.12-5.14 plot simulated and tested results together for comparison. The

tested results are drawn in round-dot line and the simulated data are in triangle-mark

line. It can be seen that the simulation results match well with the actual measurements

for all cases. Further numerical comparison shows that the mismatching are mostly less

than 10%. For read operation simulation, the mismatching is less than 3%. Thus, the

correctness and accuracy of the simulation model is demonstrated.

5.4 Summary

The simulation model has been calibrated and validated from three different

prospects. From the FC signal transmission level angle of view, the model has been

verified by checking signal transmission events against the actual FC analyzer’s traces.

From the general I/O performance trends point of view, it has been proven that the

simulation model outcome agrees well with the expectation. Lastly, and also more

importantly, the simulation model has demonstrated its accuracy by comparing its

result with actual experimental measurement.

 84

Chapter 6

Command-First Algorithm Performance

The Command-First Algorithm (CMDF) is evaluated by simulation in this chapter.

The overall method for the performance comparison between normal schedule and

CMDF is first presented. The configuration parameters and overhead constants are

stated. The performance improvement of CMDF on a sixteen HDDs storage system is

presented and the effects of CMDF are further investigated when number of HDDs

varies, the HDD access time changes and workload increases.

6.1 Overall Method

The effect of CMDF is evaluated by comparing I/O performances of an identical

simulative storage system with or without the algorithm. As shown in Figure 6.1, a

simulative storage system under test can be determined with given configuration system

parameters and FC-AL schedule methods. The simulative storage system use FC-AL as

I/O Workload

Generator

I/O Workload

Generator
Simulative Storage

System

FC-AL
schedules

System
Parameters

Performance MeasurementPerformance Measurement

I/O Throughput (IOPS)I/O Throughput (IOPS)

Data throughput (MB/s)Data throughput (MB/s)

Average Response Time Average Response Time
(ms/IO)(ms/IO)

Queue DepthQueue Depth
I/O SizeI/O Size
Read FractionRead Fraction

NormalNormal

Command FirstCommand First

Figure 6.1 Performance Evaluation Method for CMDF

 85

the backend interconnection. The arbitration schedule used on the storage controller of

the storage system can be configured as either normal or CMDF. Once the system under

test is determined, the I/O workload generator injects I/O requests based on the given

parameters such as queue depth, I/O size and read fraction. The simulation model

processes these I/Os and reports their completion.

The performance matrixes such as I/O transaction throughput (IOPS), data transfer

throughput (MB/s) and average I/O response time (ms) are monitored during each

simulation. The total number of I/O requests that have been completed is recorded. By

dividing the total number of completed requests to the simulation duration, the IOPS

can be computed. During the simulation, the payload of every data frame transferred

from source to destination port is counted for the total data transferred. The total data

transferred is divided by the simulation time to achieve the data throughput. Each I/O

request is time-stamped for arrival and completion. The I/O response time is

determined by subtracting the completion time to the arrival time. The sum of I/O

response time of all I/O requests is computed by adding the I/O response time to a

history variable that holds previous sum. The average response time can therefore be

achieved by dividing this sum to the total number of I/O requests.

6.2 System Configuration

The simulative storage system consists of one imitator HBA (storage controller)

and a number of HDDs connected by a shared FC-AL loop, as shown in Figure 6.2.

The storage controller is equipped with the specified arbitration schedules: the normal

 86

Storage
Controller

…
HDD1 HDD2 HDD3 HDD N

Figure 6.2 System Configurations

schedule or the CMDF, which can be determined by configuration inputs. By contrast,

the HDDs attached use the normal arbitration schedule only. Other overhead

constants and control parameters used in the model are specified as follows.

6.2.1 System Overhead Constant

It is initially assumed that the HDDs used are state-of-art fast disks with two

milliseconds average access time and 50 MB/s data transfer rate. A single disk can

therefore provide up to 500 I/Os per second for small access and 50 MB/s data

throughput for large I/Os. It is noted that the seeking time and the rotational latency of

the disk access are not distinguished in the model. They are included in the total delay

from receiving command to beginning of data transferring. The effects of different HDD

access speeds are further investigated.

On the other hand, for the purpose of problem isolation, it is further assumed that

other overheads of the storage controller are small and negligible. This may be not true

for a real storage system, but it is worthwhile to artificially configure these overheads to

 87

small so that some performance bound problem of FC-AL loop can be investigated

under saturated conditions. The system overhead constants are summarized in Table 6.1.

Based on the analysis of real FC analyzer traces obtained during the model

validation, the simulation sets HBA’s overhead and control constant as shown in Table

6.2 and Table 6.3 for the initiator and the target respectively. It is noted that the HBA has

command execution overhead of 43.9 microseconds, which theoretically results in 22K

IOPS I/O processing capacity. Following most industry implementation, the login

guaranteed buffer credit is set to zero. The DMA transfer bandwidth between the HBA

Table 6.2 Initiator HBA Overhead and Control Constant

Incoming Frame Buffer 3

Login Guaranteed Buffer 0

Maximum Frame Size 2048 Bytes

Full Duplex No

Command Execution Overhead 43.9 microsecond

FCP_XFER_RDY Handling Overhead 11.8 microsecond

DMA Bandwidth 1064 Mbytes per second

DMA Scheduler Overhead 15.5 microsecond

DMA Round Robin No

Incoming Frame Processing Overhead 400 nanosecond

Single Frame Transfer Overhead 20.2 microsecond

Table 6.1 System Overhead Constant

HDD Access Time 2 milliseconds per I/O

HDD Transfer Bandwidth 50 Mbytes per second

FC Link Rate 2 Gigabits per second

Storage Controller Overhead Small and negligible (Close-system workload “think time”)

 88

Table 6.3 FCP Target Overhead and Control Constant

Incoming Frame Buffer 2

Login Guaranteed Buffer 0

Maximum Frame Size 2048 Bytes

Full Duplex No

Command Execution Overhead 47.4 microsecond

FCP_RSP Generation overhead 10.3 microsecond

DMA Bandwidth 1064 Mbytes per second

DMA Scheduler Overhead 15.5 microsecond

DMA Round Robin No

Incoming Frame Processing Overhead 400 nanosecond

Single Frame Transfer Overhead 20.2 microsecond

and the rest of the system is set to be 1046 MB/s corresponding to the 133 MHz 64 bits

optimal bus speed. However, the overhead of the DMA scheduler is set to about 15

microseconds. At the same time, the DMA scheduling policy use FCFS.

6.2.2 Control Variables and Result Collection

 Other control variables are summarized in Table 6.4. The control variables include

four types of parameters, namely the FC-AL schedule, the number of HDDs, the HDD

access time and the I/O workload. The FC-AL schedule is set to either normal or CMDF.

The HDD number is set to 16 initially. The effects on variety of HDD number are also

simulated. The HDD access time is set to 2.0 milliseconds as the base. The effects of

HDD access time increases or decreases are evaluated. The closed-system I/O

workloads are used with different “queue depth” per HDDs, I/O size logarithmically

increases from 2 KB to 1 MB and three request types: pure read, pure write and

 89

Table 6.4 Configuration Variables

FC-AL Schedule Normal

CMDF

HDD Number 16, and 2 to 126
HDD Access Time 8.0 millisecond

4.0 millisecond
2.0 millisecond
1.0 millisecond
0.5 millisecond

I/O Workload Queue Depth (I/Os per HDD):
1, and 2 to 16
Options:
100% Read
100% Write
Read Write mixture (with various Read fraction)
Size:
2KB to 1MB logarithmically increase

read/write mixtures. The simulations were done first on a configuration of 16 HDDs

system with other variable changes. Once the target system is determined, different

workloads were applied. Each of these workload configurations, e.g., “1 queue-depth 2

KB pure read”, is scheduled in one simulation running. The simulations were run on a

Pentium IV 3.0 G CPU computer with Linux operating system.

Each simulation running lasts for a sufficient period so that enough I/Os can be

processed to achieve stable measurements. The I/O statistics during simulation

“warm-up” and “shut-down” periods are excluded in the measurement. The “warm-up”

period is considered complete when first ten I/Os per HDD for one queue-depth are

processed. If queue depth is n and HDD number is 16, the total number of “warm-up”

I/Os is 160n. Similarly, the last 160n I/Os are not counted during the “shut-down”

 90

period. Thus, if the targeted measurement I/O number is N, the total I/O to process is

(320n+N).

6.3 Result Analysis

The simulation results are presented and analyzed in this section. A FC-AL

storage system with 16 HDDs is first simulated to compare the I/O performance

between the normal schedule and the CMDF schedule. Event though FC-AL can

support up to 127 devices in a single loop, it is often criticized, with no exception from

other storage interfaces, for not being able to provide enough sustainable bandwidth

for all high performance HDDs attached. For example, with 50 MB/s HDDs, it can

only theoretically support up to four HDDs when the link speed is 2 gigabit per second

(200MB/s). However, the actual real-life application fortunately does not request for

such high transfer throughput to every disk at the same time. An FC-AL based storage

system with 16 HDDs attached is studied as the base system, since it gives a fairy large

attachment and receives less criticism for saturation. After evaluation on the base

system, the simulation studies are conducted for other performance factors such as the

effect of different read fraction, the effect of HDD speed, the effect of HDD number

and the effect of queue depth.

6.3.1 Based Line System Performance Improvement

The simulation results of a 16 HDDs storage system with or without the CMDF

algorithm are presented in Figure 6.3~6.5 for data throughput (MB/s), I/O throughput

(IOPS) and average response time (millisecond). It can be seen in Figure 6.3 that the

 91

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

nor mal
cmdf

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

nor mal
cmdf

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal
cmdf

I/O Request Size (Byte)(C) 100% Write

I/O Request Size (Byte)(b) 66% Read

I/O Request Size (Byte)(a) 100% Read

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

nor mal
cmdf

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

nor mal
cmdf

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal
cmdf

I/O Request Size (Byte)(C) 100% Write

I/O Request Size (Byte)(b) 66% Read

I/O Request Size (Byte)(a) 100% Read

Figure 6.3 Based Line Storage System Data Throughput Comparison

 92

0

1000

2000

3000

4000

5000

6000

7000

8000

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

0

1000

2000

3000

4000

5000

6000

7000

8000

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

0

1000

2000

3000

4000

5000

6000

7000

8000

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf
IO

 T
hr

ou
gh

pu
t (

IO
PS

)

I/O Request Size (Byte)(C) 100% Write

IO
 T

hr
ou

gh
pu

t (
IO

PS
)

I/O Request Size (Byte)(b) 66% Read

IO
 T

hr
ou

gh
pu

t (
IO

PS
)

I/O Request Size (Byte)(a) 100% Read

Figure 6.4 Based Line Storage System I/O Throughput Comparison

 93

0

10

20

30

40

50

60

70

80

90

100

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

0

10

20

30

40

50

60

70

80

90

100

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

0

10

20

30

40

50

60

70

80

90

100

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

I/O Request Size (Byte)(C) 100% Write

I/O Request Size (Byte)(b) 66% Read

I/O Request Size (Byte)(a) 100% Read

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Figure 6.5 Based Line Storage System Average Response Time

 94

data throughput raises sharply as the I/O size increases, for all cases. The measured data

throughput achieves about 7 MB/s at smallest I/O size (1KB) and grows when I/O size

increases and approaches to its maximum throughput. By contrast, the I/O throughput

(IOPS) declines as I/O size increase, as shown in Figure 6.4. It achieves about 7.5 K

IOPS when I/O size is 1 KB and reduces to half when I/O size is 32 KB. I/O average

response time shown in Figure 6.5 increases as the I/O size increase. With the

close-system workload, these three performance metrics are not independent, although

they are collected independently. The data throughput equals to the I/O throughput

multiplying the requests size, while the average response time could be calculated by

dividing the queue depth by the I/O throughput. This thesis is focusing on data

throughput analysis and the interpretations are extendable to the other two.

For the purpose of comparison, the I/O performance measurements for normal

schedule and for CMDF are plotted together in each figure. The triangle-mark blue line

presents the performance of the normal schedule and the round-dot red line presents the

CMDF. It can be seen from Figure 6.3 that the CMDF achieves significant performance

improvement when I/O request size is greater than 8 KB for pure read (100% read) and

read/write mixture (66% read) access. The CMDF however does not improve the

performance for pure write. The data throughput relative improvements by CMDF are

tabulated in Table 6.5. It is clear that the CMDF effectively improves the I/O

performance for read I/O. The improvements are achieved only when the I/O size is

larger than 8 KB. As the I/O size further increases, the data throughput achieved by the

 95

Table 6.5 CMDF Data Throughput Relative Improvement

PureRead PureWrite ReadWrite
I/OSize

NORM CMDF NORM CMDF NORM CMDF Δ% Δ% Δ%
7.32 7.32 0.00% 7.27 7.27 0.00% 7.31 7.31 0.00% 1KB

14.47 14.47 0.00% 14.37 14.37 0.00% 14.44 14.44 0.00% 2KB
28.29 28.29 0.00% 27.97 27.97 0.00% 28.21 28.21 0.00% 4KB
54.13 54.13 0.00% 53.18 53.18 0.00% 53.86 53.86 0.00% 8KB
75.66 98.1 29.66% 96.62 97.81 1.23% 74.26 99.05 33.38%16KB
102.56 165.09 60.97% 163.09 161.5 -0.97% 107.54 157.69 46.63%32KB
117.72 193.14 64.07% 182.93 183.63 0.38% 146.05 190.66 30.54%64KB
134.22 194.09 44.61% 186.07 186.43 0.19% 162.00 192.19 18.64%128KB
144.33 194.57 34.81% 187.42 187.42 0.00% 176.00 192.81 9.55% 256KB
149.98 194.82 29.90% 188.23 188.23 0.00% 183.59 192.9 5.07% 512KB
152.97 194.94 27.44% 188.57 188.57 0.00% 186.37 193.03 3.57% 1MB

CMDF approaches to the maximum that is bounded by the loop nominate bandwidth of

200MB/s.

For read access, when I/O size is small (smaller than 16KB), the CMDF does not

achieve better throughput because the overhead of the I/O commands dominates the

response time for small I/O. When the request size is small, the loop occupying time by

a target HDD to transfer data to the initiator is short. The target HDD releases the loop

quickly after access completion. Consequently, the probability of multiple devices

simultaneously arbitrating for loop access is small. In other words, the fairness access

window is small and the storage controller can quickly get access on the next access

window without the CMDF. When request sizes become bigger, the target HDDs take a

longer time to transfer data and situations of multiple devices arbitrating for loop access

become more frequent. In such environment, the storage controller has to wait for the

next access window until all devices have finished their data transfer for normal

schedule. By contrast, the CMDF does not need to wait for as long. Once the

 96

FCP_CMND frame is ready, the storage controller can start arbitration for accessing the

loop with the CMDF schedule and send commands earlier. The target HDDs thus can

start to serve the request in advance and performance gain is achieved.

Two main reasons may account for no obvious benefits from the CMDF when

access is writing. In the first hand, since the writing data are all transferred from the

initiator to the writing target, the initiator shall be mostly holding the loop when a new

command arrives. It can therefore send the command immediately without the CMDF.

In the second hand, during a write transaction, a target holds the loop only for

FCP_XFER_RDY and FCP_RSP sequence, both of which are small in size (48 bytes

and 60 bytes) and transferred in a single frame sequences. The loop holding time is very

short, and consequently the command would not be delayed for long owing the Fairness

Access Algorithm if it ever happens.

For the case of read/write mixture with 66% read, the CMDF achieves relative

smaller performance gain than pure read. It can be seen from Figure 6.3 (a) and (b) that

the CMDF achieves identical data throughput between read and read/write mixture,

although the read maximum throughput is slightly higher than read /write mixture due to

the fact that the write require additional process of FCP_XFER_RDY. The normal

schedule without CMDF however achieves a noticeable difference in data throughput

between the pure read and the read/write mixture. The HDD’s data transferring for read

request will be blocking the storage controller to send commands earlier. The effect of

read fraction is investigated in the next subsection.

 97

6.3.2 Other Performance Factor Analysis

The effect of other performance factors for the performance improvement by the

CMDF is investigated in this subsection. The effect of read fraction is first studied.

With read fraction linearly increasing, the performance improvements by the CMDF

are monitored. The effect of HDD speed is examined next. It is aiming to evaluate the

CMDF with 100% and 200% HDD speed increase or decrease. Following this, the

effect of HDD number increasing is discussed. The number of HDD increases from 2

to 126 and the I/O performances achieved by the two schedules are compared. Lastly,

the effect of queue depth per HDD is presented.

6.3.2.1 Effect of Read Fraction

Figure 6.6 shows the simulation results for the effect of read fraction for the

CMDF compared to the normal schedule. Each diagram in the figure corresponds to

one read fraction from 0.1 to 1.0. The round-dot red lines plot the data throughput

achieved by the CMDF as the I/O size increases, while the triangle-mark blue lines

show the data throughput of a normal schedule. It can be seen that the improvement of

data throughput achieved by the CMDF compared to the normal schedule becomes

more significant as the read fraction increase. It is also noted that the data throughput

of the CMDF only slightly increases when the read fraction increases. The

performance improvements are mainly due to the lower throughput of the normal

schedule when read fractions become higher. Under the normal schedule, the

command-blocking factor becomes more significant as read fraction increases and the

data throughput consequently degrades.

 98

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.1

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.2

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.3

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.6

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.7

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.8

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.9

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.4

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 1.0

0
20
40
60
80

100
120
140
160
180
200

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

normal

cmdf

Read Fraction= 0.5

Figure 6.6 Effect of Read Fraction for CMDF

 99

6.3.2.2 Effect of HDD Speed

Since the benefit brought by the CMDF is also contributed by the HDD for

executing the I/O command in advance, the speed of the HDD shall therefore also play

an important role for the overall performance improvement. The effect of the HDD

speed is presented in this subsection. Based on the parameters used for HDD in the

previous section, the speed of the HDD is adjusted for 100% and 200% increments to

be 1.0 and 0.5 milliseconds access time, and 100% and 200% decrements to be 4.0 and

8.0 milliseconds. The internal data transfer rate remains 50MB/s.

Figure 6.7 (a), (b) and (c) show the simulation results of the data throughput

achieved by the CMDF compared to the normal schedule when I/O size increases for

three different access patterns of pure read, read/write mixture and pure write. In each

diagram, the red dotted lines represent the throughput achieved by the CMDF, each of

them corresponding to one access time as labeled in the legend block. The blue solid

line represents the data throughput achieved by the normal schedule. It is clear that the

CMDF achieved significant improvement compared to the normal schedule for all

different HDD speeds when the I/O access is pure read. For faster HDD, the CMDF

starts achieving performance improvement from smaller I/O sizes since the data

transferring time is comparable to the HDD data preparing time (access time). It is also

noted that with faster HDD, the storage system achieves higher aggregate throughput.

Because of the ceiling effect of the nominate bandwidth (200MB/s), the throughput

gain achieved by the CMDF is relatively reduced as the HDD speed becomes faster.

 100

0

20

40

60

80

100

120

140

160

180

200

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

0.5 0.5
1.0 1.0
2.0 2.0
4.0 4.0
8.0 8.0

Normal CMDF

0

20

40

60

80

100

120

140

160

180

200

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

0.5 0.5
1.0 1.0
2.0 2.0
4.0 4.0
8.0 8.0

Normal CMDF

0

20

40

60

80

100

120

140

160

180

200

1k 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

0.5 0.5
1.0 1.0
2.0 2.0
4.0 4.0
8.0 8.0

Normal CMDF

D
at

a
Th

ro
ug

hp
ut

 (M
B/

s)
D

at
a

Th
ro

ug
hp

ut
 (M

B/
s)

D
at

a
Th

ro
ug

hp
ut

 (M
B/

s)

I/O Request Size (Byte)(C) 100% Write

I/O Request Size (Byte)(b) 66% Read

I/O Request Size (Byte)(a) 100% Read

D
at

a
Th

ro
ug

hp
ut

 (M
B/

s)
D

at
a

Th
ro

ug
hp

ut
 (M

B/
s)

D
at

a
Th

ro
ug

hp
ut

 (M
B/

s)

I/O Request Size (Byte)(C) 100% Write

I/O Request Size (Byte)(b) 66% Read

I/O Request Size (Byte)(a) 100% Read

Figure 6.7 Effect of HDD Speed for CMDF

 101

6.3.2.3 Effect of Number of HDD

Figure 6.8 shows the simulation results of aggregated data throughput with CMDF

or normal schedule for 4KB, 32KB, 64KB and 256KB read when HDD number

changes from 2 to 126. The round-dot red lines in the diagrams show the data

throughput achieved by the CMDF while the triangle-mark blue lines represent the

normal schedule throughput.

It can be seen in the top most diagram of Figure 6.8, the CMDF does not improve

performance when the I/O size is 4KB. It is however interesting to see that the

aggregated data throughput increases as more HDDs are attached to the loop and

settles down to about 90 MB/s around 48 HDDs. After this, the loop becomes saturated

and the throughput does not increase with additional HDD but rather slightly declines.

The reason why the CMDF does not improve throughput has been discussed in the

previous subsection for the case of 16 HDDs. The same reason is applicable here.

The second diagram in Figure 6.8 shows the simulation results of 32KB read with

the two schedules. It can be seen that the CMDF does not improve the throughput

when the HDD’s number is less than eight, while it achieves significant improvement

when more HDD’s are attached. With given system parameters, the total HDD

processing time is about 2.6 millisecond including 0.6 milliseconds HDD’s transfer

time at 50MB/s internal transfer rate for 32KB I/O request, while the ideal FC transfer

time is about 0.16 milliseconds for 2 gigabit per second link rate (32KB/200MBps). It

is possible to schedule all eight requests (one per HDD) in the 2.6 milliseconds time

window for data transferring with idles in-between. With such idle periods, the storage

 102

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 24 32 48 64 96 126

4K normal
4K cmdf

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 24 32 48 64 96 126

32K normal

32K cmdf

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 24 32 48 64 96 126

64K normal

64K cmdf

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 24 32 48 64 96 126

256K normal

256K cmdf

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s)
D

at
a

Th
ro

ug
hp

ut
 (M

B
/s)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s)
D

at
a

Th
ro

ug
hp

ut
 (M

B
/s)

HDD’s Number Increase

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 24 32 48 64 96 126

4K normal
4K cmdf

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 24 32 48 64 96 126

32K normal

32K cmdf

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 24 32 48 64 96 126

64K normal

64K cmdf

0
20
40
60
80

100
120
140
160
180
200

2 4 8 16 24 32 48 64 96 126

256K normal

256K cmdf

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s)
D

at
a

Th
ro

ug
hp

ut
 (M

B
/s)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s)
D

at
a

Th
ro

ug
hp

ut
 (M

B
/s)

HDD’s Number Increase

Figure 6.8 Effect of Number of HDD for CMDF

 103

controller hence has chance to arbitrate the loop to send a new command. The CMDF

therefore does not achieve improvement when the number of HDD is small. As the

HDD number increases to sixteen and greater, it becomes very hard to schedule all 16

or more sections of data transferring in the same time-window, with idles in between,

especially as the actual loop occupying time is considerably longer than 0.16

millisecondsl. In such situation, the HBA may often be blocked from sending new

commands by multiple sections of data transfer. As more HDDs are attached to the

loop, the normal schedule achieves higher aggregated throughput because more HDDs

are ready to send data even though some of the commands are delayed. The aggregated

throughput grows steadily as the HDD number increases with normal schedule. By

contrast, the throughput achieved by the CMDF grows quickly to the maximum around

195 MB/s, and declines slightly as the HDD number increases further from 24, owing

to the increment of per-port-delays.

The other two diagrams in Figure 6.8 show the data throughput of the two

schedules for the bigger I/O size (64KB and 256KB) when the HDD number changes.

It is clear that the CMDF achieves significant improvement when the HDD number is

more than four. Under the CMDF, the aggregated data throughput quickly reaches its

peak at 16 HDD for 64KB I/O, and at 8 HDD for 256KB I/O. After that, the

throughput slightly degrades due to the additional delay of HDD’s per-port-delay. For

bigger I/O, it is also noted that the throughput grow rate under the normal schedule

become smaller as more HDDs are attached.

 104

6.3.2.4 The Effect of Queue Depth

Figure 6.9 shows the data throughputs achieved by the CMDF and the normal

schedule on a 16 HDD’s storage system for 4KB, 32KB, 64KB and 256KB read when

number of outstanding I/O requests per HDD increases from 1 to 16. The round-dot

red lines in the diagrams show the data throughput achieved by the CMDF while the

triangle-mark blue lines represent the throughput of the normal schedule.

When I/O size is small (4KB), the CMDF and the normal schedule achieve

identical throughput regardless of the number of outstanding I/O per HDD (queue

depth). As stated at the beginning of this chapter, the storage controller spends about

43.9 microseconds to execute each I/O, which results in maximum of 22K IOPS I/O

processing capacity. As the queue depth increases, the storage controller I/O

processing capacity limits the maximum aggregate throughput, that is, about 88 MB/s

(22K times 4KB).

When I/O size is 32KB, the aggregated throughput achieved by the CMDF rises to

the maximum when queue depth per HDD is two. When queue depth further increases,

the throughput remains unchanged since there is no room for improvement due to the

ceiling effect of the maximum bandwidth. By contrast, without the CMDF, the

throughput is limited by the effect of command blocking by the data transferring.

When queue depth increases, the storage controller can send multiple I/O commands to

each HDD when the loop is held by the storage controller. The HDDs are therefore

kept in busy, and the aggregated throughput increases as the queue depth grows until

the loop is saturated. After saturation, the HDD are mostly busy for either preparing

 105

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4K normal

4K cmdf

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

32K normal

32K cmdf

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

64K normal

64K cmdf

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

256K normal

256K cmdf

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

Queue Depth Increase

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4K normal

4K cmdf

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

32K normal

32K cmdf

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

64K normal

64K cmdf

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

256K normal

256K cmdf

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

D
at

a
Th

ro
ug

hp
ut

 (M
B

/s
)

Queue Depth Increase
Figure 6.9 Effect of Queue Depth per HDD

 106

the data or transferring data through the FC-AL loop when it receives a new command.

Therefore no benefit can be seen for the CMDF when queue depth is deep enough

(greater than 6 for the case of 32KB I/O).

For the cases of 64KB and 256K, the aggregated data throughput achieved by the

CMDF reaches the maximum even for the case of one queue depth. The FC transfer

time for 64KB data is about 0.3 milliseconds (64KB/50MBps). All 16 requests

accessing the 16 HDDs would take about 4.8 milliseconds to complete the data

transferring. With the CMDF algorithm, a new request command will be issued and

sent to the corresponding HDD at about 0.3439 milliseconds (0.3 + 0.0439) after the

data transferring starts, if the data requested by these 16 I/Os are assumed to be

transferred continuously. Once the corresponding HDD receives the command, it can

start to prepare the requested data. With the assumption of 2 milliseconds overhead

and 50MB/s internal transfer rate, the HDD will be ready to transfer data in 3.125

milliseconds. Adding 0.3439 milliseconds, the HDD will be ready to transfer data at

about 3.5 milliseconds that is before the completion time of 4.8 milliseconds. The

requested data can therefore be continuously transferred, and the loop idle periods will

be kept in minimum. The maximum throughput is therefore achieved. By contrast,

without the CMDF algorithm, the command may be delayed by the data transferring

and the HDD would not be able to prepare the requested data in advance. It would

cause the loop to become idle after completion of previous batch of request and the

throughput achieved by normal schedule is therefore degraded.

 107

6.4 Summary

This chapter has conducted performance evaluations on the effect of

Command-First Algorithm compared to the normal schedule on FC-AL storage system

in this chapter. The overall method for the performance evaluation has been described

at the beginning, followed by detailing the simulative storage system configuration.

The I/O performances in terms of data throughput (MB/s), I/O throughput (IOPS) and

the average I/O response time (millisecond) for the base system consisting 16 HDDs

have been compared for the two schedules. The Command-First Algorithm has

achieved up to 50% throughput improvement for medium size I/Os. The effects of

Command-First Algorithm have been further evaluated in some extended

environments, such as different number of HDDs, increasing workload (in the form of

deeper queue-depth per HDD). In all situations, the Command-First Algorithm has

almost no negative effect.

 108

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The goals of this thesis are to develop a detailed and accurate simulation model for

high-end storage systems that employ the FC-AL as back-end connection for HDDs,

and to evaluate the proposed Command-First Algorithm for an FC-AL based storage

system through the simulation model. This thesis is summarized as following.

Firstly, a novel way of simulating FC-AL based storage system has been presented.

A modular simulation model hierarchy for an FC-AL based storage system has been

developed. The FC-AL transmission model was first introduced, and then the L_Port’s

functionalities including the LPSM and the Alternative Buffer-to-buffer flow control

were modeled. On top of that, the FCP HBA model was developed to simulate the FCP

SCSI transaction. With additional support of an HBA device driver module and HDD

firmware functions module, the system level simulation tool integration has been

delivered.

Secondly, the simulation model has been calibrated and validated. By checking

signal transmission events against the actual FC analyzer’s traces, the model has been

verified in term of lowest level transmission. By examining the general I/O

performance trends, the model has been proven to agree with the expectation. The

actual experiments have been conducted and the experimental results have been

 109

compared to the simulated results. The results show that the FC-AL model is accurate

with an error range of less than 3% for read operation.

Thirdly, the Command-First Algorithm has been proposed in three different levels.

The fist level is to place the command in front of data so that the command can be sent

earlier. The second level is the command first arbitration that forces the storage

controller to operate in unfair mode for command frame transferring. The preemptive

command transferring, the third level, is to further enforce the storage controller to

send the command preemptively.

Finally, the evaluation of the proposed Command-First Algorithm have been

conducted and compared to a normal FC schedule. The simulation measurements have

shown that the performance gains achieved by the algorithm are up to 50%

improvement compared to the normal schedule in certain conditions, and that there are

no negative effects of Command-First Algorithm.

7.2 Future Work

The proposed Command-First Algorithm so far has been proven an effective

schedule for FC-AL based storage systems. It is however worthwhile to note that the

evaluation has not included the benefit that might be brought along with the algorithm

when the optimal scheduling is enabled in HDD. Future work may involve a more

detailed HDD model to evaluate this effect. On the other hand, the solid effect of the

algorithm has yet been evaluated by actual implementation. The natural extension of

the work is to carry a prototype that enables the algorithm. Furthermore, the realistic

 110

application environment whereby the algorithm can achieve its significance is another

consideration for the future work.

 111

Bibliography

[1] Yao-Long Zhu, Shun-Yu Zhu and Hui Xiong, “Performance Analysis and Testing

of the Storage Area Network,” the 19th IEEE Symposium on Mass Storage Systems

and Technologies, April 2002.

[2] C.Y. Wang, F.Zhou, Y.L.Zhu, C.T. Chong, B. Hou, W.Y.Xi, “Simulation of Fibre

Channel Storage Area Network Using SANSim,” the 11th IEEE International

Conference on Network (ICON2003), October 2003.

[3] C.Y. Wang, F.Zhou, Y.L.Zhu, C.T. Chong, B.Hou, W.Y.Xi, “Simulation and

Analysis of FC Network,” the 28th Annual IEEE Conference on Local Computer

Networks (LCN2003), October 2003.

[4] Y.L. Zhu, C.Y. Wang, W.Y. Xi, F.Zhou, “SANSim - A Simulation And Design

Platform of Storage Area Network,” the 12th NASA Goddard Conference on Mass

Storage Systems and Technologies / the 21st IEEE Symposium on Mass Storage

Systems, April 2004.

[5] E. Grochowski and R. D. Halem, “Technological Impact of Magnetic Hard Disk

Drives on Storage Systems,” IBM System Journal, Vol. 42, No. 2, Pages:338-346,

2003.

[6] R. J. T. Morris and B. J. Truskowski, “The Evolution of Storage Systems,” IBM

System Journal, Vol. 42, No. 2, Pages: 205-217, 2003.

 112

[7] David A. Patterson, Garth Gibson, and Randy H. Katz, “A Case for Redundant

Arrays of Inexpensive Disks (RAID),” International Conference on Management

of Data (SIGMOD), Pages: 109-116, June 1988.

[8] Peter M. Chen, Edward K. Lee, Garth A. Gibson, Randy H. Katz and David A.

Patterson, “RAID: High-Performance, Reliable Secondary Storage,” ACM

Computing Surveys (CSUR), Vol. 26, No. 2, Pages 145-185, June 1994.

[9] ANSI X3.272:1996, “Information Technology – Fibre Channel Arbitrated Loop

(FCAL),” American National Standard Institute, Inc., 1996.

[10] ANSI X3.230:1994, “Fibre Channel Physical and Signaling Interface (FC-PH),”

American National Standard Institute, Inc., 1994.

[11] ANSI X3.269:1996, Fibre Channel Protocol for SCSI (FCP), American National

Standard Institute, Inc., 1996.

[12] WWW webpage for FC Projects on Technical Committee T11 homepage,

http://www.t11.org/Index.html.

[13] Jeffrey D. Stai, “The Fibre Channel Bench Reference,” ENDL Publications,

ISBN 1-879936-17-8, 1st Edition, May 1995.

[14] Elizabeth Shriver, Bruce K. Hillyer, and A vi Silberschatz, “Performance Analysis

of Storage Systems,” Performance Evaluation, LNCS 1769, Pages: 33-50, 2000.

[15] Xavier Molero, Federico Silla, Vicente Santonja and José Duato, “Modeling and

Simulation of Storage Area Networks,” the 8th IEEE International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOT2000), September 2000.

 113

[16] Petra Berenbrink, André Brinkmann and Christian Scheideler, "SIMLAB - A

Simulation Environment for Storage Area Networks," the 9th Euromicro Workshop

on Parallel and Distributed Processing (PDP), 2000.

[17] John S. Bucy, Gregory R. Ganger, “The DiskSim Simulation Environment

Version 3.0 Reference Manual,” http://www.pdl.cmu.edu/PDL-FTP/

DriveChar/CMU-CS-03-102_abs.html, January 2003.

[18] Gregory R. Ganger and Yale N. Patt., “Using System-Level Models to Evaluate

I/O Subsystem Designs,” IEEE Transactions on Computers, Vol. 47, Issues 6,

Pages:667-678, 1998.

[19] John Wilkes, “The Pantheon storage-system simulator,” HPL-SSP-95-14,

Hewlett-Packard Laboratories technical report, May 1996.

[20] John R. Heath and Peter J. Yakutis, "High-Speed Storage Area networks Using

Fibre Channel Arbitrated Loop Interconnect," IEEE Network 2000, Pages: 51-56,

April 2000.

[21] David H.C. Du, Tai-Sheng Chang, Jenwei Hsieh, Yuewei Wang and Sangyup

Shim, “Interface Comparisons: SSA versus FC-AL,” IEEE Concurrency, Vol. 6,

No. 2, April-June 1998.

[22] Shenze Che and Manu Thapar, “Fibre Channel Storage Interface for

Video-on-Demand Servers,” HPL-95-125, Hewlett-Packard Laboratories technical

report, November 1995.

[23] Jae-Chang Namgoong and Chan-Ik Park, “Design and Implementation of a Fibre

Channel Network Driver for SAN-Attached RAID Controllers,” the 8th

 114

International Conference on Parallel and Distributed Systems (ICPADS2001),

June 2001.

[24] Vishal Sinha and David H. C. Du, “Switched FC-AL: An Arbitrated Loop

Attachment for Fibre Channel Switches,” the 17th IEEE Symposium on Mass

Storage Systems, March 2000.

[25] Zhang Hong, Koay Teong Beng, Venugopalan Pallayil, Zhang Yilu, John R

Potter, and Lawrence Wong Wai Choong, “Fibre Channel Storage Area Network

Design for an Acoustic Camera System with 1.6 Gbits/s Bandwidth,” in Proc. of

IEEE Region 10 International Conference on Electrical and Electronic Technology

(TENCON 2001), August 2001.

[26] Thomas M. Ruwart, “Performance Characterization of Large and Long Fibre

Channel Arbitrated Loops,” 16th IEEE Symposium on Mass Storage Systems,

March 1999.

[27] Denise Colon, “SANs Demystified,” McGraw Hill, ISBN: 0071396586, October

2002.

[28] Ralph H. Thornburgh & Barry J. Schoenborn, “Storage Area Networks –

Designing and Implementing a Mass Storage System,” 1st Edition, Prentice Hall

PTR, ISBN: 0130279595, September 2000.

[29] Marc Farley, “Building Storage Networks,” 1st Edition, McGraw-Hill Osborne

Media, ISBN: 0072130725, February 2000.

 115

[30] Tom Clark, “Designing Storage Area Networks – A Practical Reference for

Implementing Fibre Channel and IP SANs,” 2nd Edition, Addison-Wesley

Professional, ISBN: 0321136500, April 2003.

[31] Bruce L. Worthington, Gregory R. Ganger and Yale N. Patt, “Scheduling

Algorithms for Modern Disk Drives,” ACM SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, May 1994.

[32] Bruce L. Worthington, “Aggressive Centralized and Distributed Scheduling of

Disk Requests,” PhD Thesis, Department of Computer Science and Engineering,

University of Michigan, June 1995.

[33] Chris Ruemmler and John Wilkes, “An Introduction to Disk Drive Modeling,”

IEEE Computer, Vol. 27, No.3, Pages:17-28, March 1994.

[34] Edward Kihyen Lee and Randy H. Katz, “An Analytic Performance Model Of

Disk Arrays,” ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems, May 1993.

[35] Gregory R. Ganger and Yale N. Patt, “The Process-Flow Model: Examining I/O

Performance from the System’s Point of View,” ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems, May 1993.

[36] Ehud Finkelstein and Shlomo Weiss, “A PCI Bus simulation framework and

some simulation results on PCI standard 2.1 latency limitations,” Journal of

Systems Architecture, Vol. 47, Pages: 807-819, 2002.

[37] M.H. MacDougall, “Computer System Simulation: An Introduction”, Computing

Surveys, Vol 2, No. 3, September 1970.

 116

[38] SCSI Standard Architecture, http://www.t10.org/.

[39] Serial Storage Architecture, http://www.t10.org/.

[40] IO Meter, http://www.iometer.org/.

[41] Raj Jain, “The Art of Computer Systems Performance Analysis: Techniques for

Experimental Design, Measurement, Simulation, and Modeling”, John Wiley &

Sons, Inc., ISBN 0-471-50336-3, April 1991.

 117

	
	
	 Acknowledgments
	Summary
	 List of Tables
	 List of Figures
	Chapter 1 Introduction
	1.1 Introduction to Data Storage & Storage System
	1.2 Main Contributions
	1.3 Organization
	Chapter 2 Background and Related Work
	2.1 Fibre Channel Overview
	2.2 Fibre Channel for Storage
	2.2.1 Fibre Channel SANs
	2.2.2 FC-AL for Storage System

	2.3 Storage System Performance Study Methods
	2.3.1 Performance Study by Simulation
	2.3.2 Theoretical Estimation by Analytical Modeling

	2.4 Summary

	Chapter 3 Command-First Algorithm
	3.1 Analysis of FC-AL Network Storage System
	3.1.1 FC-AL Based Storage System
	3.1.2 Storage Controller
	3.1.3 Interfacing to the Host Bus Adapter
	3.1.4 FC HBA Internal Operation

	3.2 Performance Limitation of Command Queuing Delay
	3.2.1 External I/O Queue
	3.2.2 Internal I/O Queue
	3.2.3 HBA Internal Queue

	3.3 Limitation of Fairness Access Algorithm
	3.3.1 FC-AL Operation
	3.3.2 Arbitration Process and Fairness Access Algorithm
	3.3.3 Command Delay by Fairness Access Algorithm

	3.4 Command-First Algorithm
	3.4.1 Command-First FIFO
	3.4.2 Command-First Arbitration
	3.4.3 Preemptive Transferring Command

	3.5 Summary

	Chapter 4 SANSim and Network Storage System Simulation Modeling
	4.1 Introduction
	4.2 SANSim Overview
	4.2.1 I/O Workload Module
	4.2.2 Host Module
	4.2.3 FC Network Module
	FC Controller Module
	4.2.3.2 FC Switch Module
	4.2.3.3 FC Port & Communication Module

	4.2.4 Storage Module

	4.3 Simulation Modeling of FC-AL Storage System
	4.3.1 FC-AL Module
	4.3.1.1 Signal Transmission
	4.3.1.2 Loop Port State Machine
	4.3.1.3 FC-2 Signaling and Framing
	4.3.1.4 Alternative Buffer-to-Buffer Flow Control

	4.3.2 FC HBA Module
	4.3.2.1 FCP Operation Protocol
	4.3.2.2 FCP Initiator Mode
	4.3.2.3 FCP Target Mode

	4.3.3 HBA Device Driver Module
	4.3.3.1 FC HBA Initiator Device Driver
	4.3.3.2 Hard Disk Drive Firmware for FC Interface

	4.3.4 Model Integration

	Summary

	Chapter 5 Calibration and Validation
	5.1 Transmission Calibrations
	5.2 Trends Confirmation
	5.2.1 Performance of One-to-one Configuration
	5.2.2 Effect of Number of Node
	Effect of Physical Distance

	5.3 Actual Testing and Simulation Comparison
	5.3.1 Experimental Environment
	5.3.2 Result Comparisons

	5.4 Summary

	Chapter 6 Command-First Algorithm Performance
	6.1 Overall Method
	6.2 System Configuration
	System Overhead Constant
	Control Variables and Result Collection

	6.3 Result Analysis
	6.3.1 Based Line System Performance Improvement
	6.3.2 Other Performance Factor Analysis
	6.3.2.1 Effect of Read Fraction
	6.3.2.2 Effect of HDD Speed
	6.3.2.3 Effect of Number of HDD
	6.3.2.4 The Effect of Queue Depth

	6.4 Summary

	Chapter 7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future Work

	 Bibliography

