15,472 research outputs found

    Feasibility of using a knowledge-based system concept for in-flight primary flight display research

    Get PDF
    A study was conducted to determine the feasibility of using knowledge-based systems architectures for inflight research of primary flight display information management issues. The feasibility relied on the ability to integrate knowledge-based systems with existing onboard aircraft systems. And, given the hardware and software platforms available, the feasibility also depended on the ability to use interpreted LISP software with the real time operation of the primary flight display. In addition to evaluating these feasibility issues, the study determined whether the software engineering advantages of knowledge-based systems found for this application in the earlier workstation study extended to the inflight research environment. To study these issues, two integrated knowledge-based systems were designed to control the primary flight display according to pre-existing specifications of an ongoing primary flight display information management research effort. These two systems were implemented to assess the feasibility and software engineering issues listed. Flight test results were successful in showing the feasibility of using knowledge-based systems inflight with actual aircraft data

    Functional requirements for onboard management of space shuttle consumables, volume 1

    Get PDF
    A study was conducted to determine the functional requirements for onboard management of space shuttle consumables. A generalized consumable management concept was developed for application to advanced spacecraft. The subsystems and related consumables selected for inclusion in the consumables management system are: (1) propulsion, (2) power generation, and (3) environmental and life support

    Flight-testing of the self-repairing flight control system using the F-15 highly integrated digital electronic control flight research facility

    Get PDF
    Flight tests conducted with the self-repairing flight control system (SRFCS) installed on the NASA F-15 highly integrated digital electronic control aircraft are described. The development leading to the current SRFCS configuration is highlighted. Key objectives of the program are outlined: (1) to flight-evaluate a control reconfiguration strategy with three types of control surface failure; (2) to evaluate a cockpit display that will inform the pilot of the maneuvering capacity of the damage aircraft; and (3) to flight-evaluate the onboard expert system maintenance diagnostics process using representative faults set to occur only under maneuvering conditions. Preliminary flight results addressing the operation of the overall system, as well as the individual technologies, are included

    Space shuttle propulsion systems on-board checkout and monitoring system development study. Volume 1 - Summary Final report

    Get PDF
    Development of onboard checkout equipment and performance monitoring capability for space shuttles - Vol.

    Flight control systems development and flight test experience with the HiMAT research vehicles

    Get PDF
    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time

    Aerospace medicine and biology: A continuing bibliography with indexes

    Get PDF
    This bibliography lists 138 reports, articles, and other documents introduced into the NASA scientific and technical information system in Jun. 1980

    Investigation of advanced navigation and guidance system concepts for all-weather rotorcraft operations

    Get PDF
    Results are presented of a survey conducted of active helicopter operators to determine the extent to which they wish to operate in IMC conditions, the visibility limits under which they would operate, the revenue benefits to be gained, and the percent of aircraft cost they would pay for such increased capability. Candidate systems were examined for capability to meet the requirements of a mission model constructed to represent the modes of flight normally encountered in low visibility conditions. Recommendations are made for development of high resolution radar, simulation of the control display system for steep approaches, and for development of an obstacle sensing system for detecting wires. A cost feasibility analysis is included

    Considerations for the design of an onboard air traffic situation display

    Get PDF
    The basic concept of remoting information to the cockpit is used to design and develop a computerized airborne traffic situation display device that automatically selects and presents segments of a controller's scope to the aircraft pilot via a narrow band digital data link. These data are integrated with aircraft heading and navigation information to provide a display useful in congested air space. The display can include alphanumerical symbols, air route maps, and controller instructions

    Flight investigation of manual and automatic VTOL decelerating instrument approaches and landings

    Get PDF
    A flight investigation was undertaken to study the problems associated with manual and automatic control of steep, decelerating instrument approaches and landings under simulated instrument conditions. The study was conducted with a research helicopter equipped with a three-cue flight-director indicator. The scope of the investigation included variations in the flight-director control laws, glide-path angle, deceleration profile, and control response characteristics. Investigation of the automatic-control problem resulted in the first automated approach and landing to a predetermined spot ever accomplished with a helicopter. Although well-controlled approaches and landings could be performed manually with the flight-director concept, pilot comments indicated the need for a better display which would more effectively integrate command and situation information
    • …
    corecore