4,858 research outputs found

    Operator Objective Function Guidance for a Real-time Unmanned Vehicle Scheduling Algorithm

    Get PDF
    Advances in autonomy have made it possible to invert the typical operator-to-unmanned-vehicle ratio so that asingle operator can now control multiple heterogeneous unmanned vehicles. Algorithms used in unmanned-vehicle path planning and task allocation typically have an objective function that only takes into account variables initially identified by designers with set weightings. This can make the algorithm seemingly opaque to an operator and brittle under changing mission priorities. To address these issues, it is proposed that allowing operators to dynamically modify objective function weightings of an automated planner during a mission can have performance benefits. A multiple-unmanned-vehicle simulation test bed was modified so that operators could either choose one variable or choose any combination of equally weighted variables for the automated planner to use in evaluating mission plans. Results from a human-participant experiment showed that operators rated their performance and confidence highest when using the dynamic objective function with multiple objectives. Allowing operators to adjust multiple objectives resulted in enhanced situational awareness, increased spare mental capacity, fewer interventions to modify the objective function, and no significant differences in mission performance. Adding this form of flexibility and transparency to automation in future unmanned vehicle systems could improve performance, engender operator trust, and reduce errors.Aurora Flight Sciences, U.S. Office of Naval Researc

    A Briefing on Metrics and Risks for Autonomous Decision-Making in Aerospace Applications

    Get PDF
    Significant technology advances will enable future aerospace systems to safely and reliably make decisions autonomously, or without human interaction. The decision-making may result in actions that enable an aircraft or spacecraft in an off-nominal state or with slightly degraded components to achieve mission performance and safety goals while reducing or avoiding damage to the aircraft or spacecraft. Some key technology enablers for autonomous decision-making include: a continuous state awareness through the maturation of the prognostics health management field, novel sensor development, and the considerable gains made in computation power and data processing bandwidth versus system size. Sophisticated algorithms and physics based models coupled with these technological advances allow reliable assessment of a system, subsystem, or components. Decisions that balance mission objectives and constraints with remaining useful life predictions can be made autonomously to maintain safety requirements, optimal performance, and ensure mission objectives. This autonomous approach to decision-making will come with new risks and benefits, some of which will be examined in this paper. To start, an account of previous work to categorize or quantify autonomy in aerospace systems will be presented. In addition, a survey of perceived risks in autonomous decision-making in the context of piloted aircraft and remotely piloted or completely autonomous unmanned autonomous systems (UAS) will be presented based on interviews that were conducted with individuals from industry, academia, and government

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station

    Measuring the Performance of Livability Programs, MTI Report 12-06

    Get PDF
    This report analyzes the performance measurement processes adopted by five large “livability” programs throughout the United States. It compares and contrasts these programs by examining existing research in performance measurement methods. The “best practices” of the examined performance measurement methods for each program are explored and analyzed with respect to their key characteristics. The report entails an appropriately comprehensive literature review of the current research on performance measurement methods from the perspective of various stakeholders including the public and government agencies. Additionally, the results of this literature review are used to examine the actual performance measures of the target programs from the perspective of different stakeholders. The goal of the report is to determine what did and did not work in these programs and their measurement methods, while making recommendations based on the results of the analysis for potential future programs

    A proposal for a global task planning architecture using the RoboEarth cloud based framework

    Get PDF
    As robotic systems become more and more capable of assisting in human domains, methods are sought to compose robot executable plans from abstract human instructions. To cope with the semantically rich and highly expressive nature of human instructions, Hierarchical Task Network planning is often being employed along with domain knowledge to solve planning problems in a pragmatic way. Commonly, the domain knowledge is specific to the planning problem at hand, impeding re-use. Therefore this paper conceptualizes a global planning architecture, based on the worldwide accessible RoboEarth cloud framework. This architecture allows environmental state inference and plan monitoring on a global level. To enable plan re-use for future requests, the RoboEarth action language has been adapted to allow semantic matching of robot capabilities with previously composed plans

    Dynamic human-computer collaboration in real-time unmanned vehicle scheduling

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 123-127).Advances in autonomy have made it possible to invert the operator-to-vehicle ratio so that a single operator can control multiple heterogeneous Unmanned Vehicles (UVs). This autonomy will reduce the need for the operator to manually control each vehicle, enabling the operator to focus on higher-level goal setting and decision-making. Computer optimization algorithms that can be used in UV path-planning and task allocation usually have an a priori coded objective function that only takes into account pre-determined variables with set weightings. Due to the complex, time-critical, and dynamic nature of command and control missions, brittleness due to a static objective function could cause higher workload as the operator manages the automation. Increased workload during critical decision-making could lead to lower system performance which, in turn, could result in a mission or life-critical failure. This research proposes a method of collaborative multiple UV control that enables operators to dynamically modify the weightings within the objective function of an automated planner during a mission. After a review of function allocation literature, an appropriate taxonomy was used to evaluate the likely impact of human interaction with a dynamic objective function. This analysis revealed a potential reduction in the number of cognitive steps required to evaluate and select a plan, by aligning the objectives of the operator with the automated planner. A multiple UV simulation testbed was modified to provide two types of dynamic objective functions. The operator could either choose one quantity or choose any combination of equally weighted quantities for the automated planner to use in evaluating mission plans. To compare the performance and workload of operators using these dynamic objective functions against operators using a static objective function, an experiment was conducted where 30 participants performed UV missions in a synthetic environment. Two scenarios were designed, one in which the Rules of Engagement (ROEs) remained the same throughout the scenario and one in which the ROEs changed. The experimental results showed that operators rated their performance and confidence highest when using the dynamic objective function with multiple objectives. Allowing the operator to choose multiple objectives resulted in fewer modifications to the objective function, enhanced situational awareness (SA), and increased spare mental capacity. Limiting the operator to choosing a single objective for the automated planner led to superior performance for individual mission goals such as finding new targets, while also causing some violations of ROEs, such as destroying a target without permission. Although there were no significant differences in system performance or workload between the dynamic and static objective 4 functions, operators had superior performance and higher SA during the mission with changing ROEs. While these results suggest that a dynamic objective function could be beneficial, further research is required to explore the impact of dynamic objective functions and changing mission goals on human performance and workload in multiple UV control.by Andrew S. Clare.S.M

    Science-driven Autonomous & Heterogeneous Robotic Networks: A Vision for Future Ocean Observations

    Get PDF
    The goal of this project was to develop the first algorithms that allow a heterogeneous group of oceanic robots to autonomously determine and implement sampling strategies with the help of numerical ocean forecasts and remotely-sensed observations. Two-way feedback with shore-based numerical models, tested in the field, had not previously been attempted. New planning algorithms were tested during two field programs in Monterey Bay during a 12-month period using three different types of autonomous vehicles
    corecore