3 research outputs found

    Congestion-aware wireless network-on-chip for high-speed communication

    Get PDF
    The design of system-on-chip (SoC) requires the complex integration between a multi-number of cores on a single chip. To establish the effective communication between multiple cores there aremore challenging issues on designing the network-on-chip (NoC) architectures. The proposed system deals with the utilization of on-chip antennas for the wireless communication between the long distance cores to minimize the latency and power. In this proposed work, we have designed high-speed wireless NoC (WiNoC) for on-chip communication. This high-speed WiNoC has been achieved by designing a congestion measure unit, which monitors and measures the congestion in the input data and establishes the effective wireless communication between the output channels and routers. The designed architecture is synthesized and implemented by using Altera Quartus II, where the SoC is designed using Qsys builder. The proposed WiNoC shows better performance parameters like throughput, latency and power than the conventional NoC

    Design and evaluation of a high throughput QoS-aware and congestion-aware router architecture for Network-on-Chip

    No full text
    This paper proposes a novel QoS-aware and congestion-aware Network-on-Chip architecture that not only enables quality-oriented network transmission and maintains a feasible implementation cost but also well balance traffic load inside the network to enhance overall throughput. By differentiating application traffic into different service classes, bandwidth allocation is managed accordingly to fulfill QoS requirements. Incorporating with congestion control scheme which consists of dynamic arbitration and adaptive routing path selection, high priority traffic is directed to less congested areas and is given preference to available resources. Simulation results show that average latency of high priority and overall traffic is improved dramatically for various traffic patterns. Cost evaluation results also show that the proposed router architecture requires negligible cost overhead but provides better performance for both advanced mesh NoC platforms. Ā© 2013 Elsevier B.V. All rights reserved
    corecore