304 research outputs found

    Kernel-assisted and Topology-aware MPI Collective Communication among Multicore or Many-core Clusters

    Get PDF
    Multicore or many-core clusters have become the most prominent form of High Performance Computing (HPC) systems. Hardware complexity and hierarchies not only exist in the inter-node layer, i.e., hierarchical networks, but also exist in internals of multicore compute nodes, e.g., Non Uniform Memory Accesses (NUMA), network-style interconnect, and memory and shared cache hierarchies. Message Passing Interface (MPI), the most widely adopted in the HPC communities, suffers from decreased performance and portability due to increased hardware complexity of multiple levels. We identified three critical issues specific to collective communication: The first problem arises from the gap between logical collective topologies and underlying hardware topologies; Second, current MPI communications lack efficient shared memory message delivering approaches; Last, on distributed memory machines, like multicore clusters, a single approach cannot encompass the extreme variations not only in the bandwidth and latency capabilities, but also in features such as the aptitude to operate multiple concurrent copies simultaneously. To bridge the gap between logical collective topologies and hardware topologies, we developed a distance-aware framework to integrate the knowledge of hardware distance into collective algorithms in order to dynamically reshape the communication patterns to suit the hardware capabilities. Based on process distance information, we used graph partitioning techniques to organize the MPI processes in a multi-level hierarchy, mapping on the hardware characteristics. Meanwhile, we took advantage of the kernel-assisted one-sided single-copy approach (KNEM) as the default shared memory delivering method. Via kernel-assisted memory copy, the collective algorithms offload copy tasks onto non-leader/not-root processes to evenly distribute copy workloads among available cores. Finally, on distributed memory machines, we developed a technique to compose multi-layered collective algorithms together to express a multi-level algorithm with tight interoperability between the levels. This tight collaboration results in more overlaps between inter- and intra-node communication. Experimental results have confirmed that, by leveraging several technologies together, such as kernel-assisted memory copy, the distance-aware framework, and collective algorithm composition, not only do MPI collectives reach the potential maximum performance on a wide variation of platforms, but they also deliver a level of performance immune to modifications of the underlying process-core binding

    Performance Modeling and Evaluation of Distributed Deep Learning Frameworks on GPUs

    Full text link
    Deep learning frameworks have been widely deployed on GPU servers for deep learning applications in both academia and industry. In training deep neural networks (DNNs), there are many standard processes or algorithms, such as convolution and stochastic gradient descent (SGD), but the running performance of different frameworks might be different even running the same deep model on the same GPU hardware. In this study, we evaluate the running performance of four state-of-the-art distributed deep learning frameworks (i.e., Caffe-MPI, CNTK, MXNet, and TensorFlow) over single-GPU, multi-GPU, and multi-node environments. We first build performance models of standard processes in training DNNs with SGD, and then we benchmark the running performance of these frameworks with three popular convolutional neural networks (i.e., AlexNet, GoogleNet and ResNet-50), after that, we analyze what factors that result in the performance gap among these four frameworks. Through both analytical and experimental analysis, we identify bottlenecks and overheads which could be further optimized. The main contribution is that the proposed performance models and the analysis provide further optimization directions in both algorithmic design and system configuration.Comment: Published at DataCom'201

    Scalable Distributed DNN Training using TensorFlow and CUDA-Aware MPI: Characterization, Designs, and Performance Evaluation

    Full text link
    TensorFlow has been the most widely adopted Machine/Deep Learning framework. However, little exists in the literature that provides a thorough understanding of the capabilities which TensorFlow offers for the distributed training of large ML/DL models that need computation and communication at scale. Most commonly used distributed training approaches for TF can be categorized as follows: 1) Google Remote Procedure Call (gRPC), 2) gRPC+X: X=(InfiniBand Verbs, Message Passing Interface, and GPUDirect RDMA), and 3) No-gRPC: Baidu Allreduce with MPI, Horovod with MPI, and Horovod with NVIDIA NCCL. In this paper, we provide an in-depth performance characterization and analysis of these distributed training approaches on various GPU clusters including the Piz Daint system (6 on Top500). We perform experiments to gain novel insights along the following vectors: 1) Application-level scalability of DNN training, 2) Effect of Batch Size on scaling efficiency, 3) Impact of the MPI library used for no-gRPC approaches, and 4) Type and size of DNN architectures. Based on these experiments, we present two key insights: 1) Overall, No-gRPC designs achieve better performance compared to gRPC-based approaches for most configurations, and 2) The performance of No-gRPC is heavily influenced by the gradient aggregation using Allreduce. Finally, we propose a truly CUDA-Aware MPI Allreduce design that exploits CUDA kernels and pointer caching to perform large reductions efficiently. Our proposed designs offer 5-17X better performance than NCCL2 for small and medium messages, and reduces latency by 29% for large messages. The proposed optimizations help Horovod-MPI to achieve approximately 90% scaling efficiency for ResNet-50 training on 64 GPUs. Further, Horovod-MPI achieves 1.8X and 3.2X higher throughput than the native gRPC method for ResNet-50 and MobileNet, respectively, on the Piz Daint cluster.Comment: 10 pages, 9 figures, submitted to IEEE IPDPS 2019 for peer-revie

    Programming Models\u27 Support for Heterogeneous Architecture

    Get PDF
    Accelerator-enhanced computing platforms have drawn a lot of attention due to their massive peak computational capacity. Heterogeneous systems equipped with accelerators such as GPUs have become the most prominent components of High Performance Computing (HPC) systems. Even at the node level the significant heterogeneity of CPU and GPU, i.e. hardware and memory space differences, leads to challenges for fully exploiting such complex architectures. Extending outside the node scope, only escalate such challenges. Conventional programming models such as data- ow and message passing have been widely adopted in HPC communities. When moving towards heterogeneous systems, the lack of GPU integration causes such programming models to struggle in handling the heterogeneity of different computing units, leading to sub-optimal performance and drastic decrease in developer productivity. To bridge the gap between underlying heterogeneous architectures and current programming paradigms, we propose to extend such programming paradigms with architecture awareness optimization. Two programming models are used to demonstrate the impact of heterogeneous architecture awareness. The PaRSEC task-based runtime, an adopter of the data- ow model, provides opportunities for overlapping communications with computations and minimizing data movements, as well as dynamically adapting the work granularity to the capability of the hardware. To fulfill the demand of an efficient and portable Message Passing Interface (MPI) implementation to communicate GPU data, a GPU-aware design is presented based on the Open MPI infrastructure supporting efficient point-to-point and collective communications of GPU-residential data, for both contiguous and non-contiguous memory layouts, by leveraging GPU network topology and hardware capabilities such as GPUDirect. The tight integration of GPU support in a widely used programming environment, free the developers from manually move data into/out of host memory before/after relying on MPI routines for communications, allowing them to focus instead on algorithmic optimizations. Experimental results have confirmed that supported by such a tight and transparent integration, conventional programming models can once again take advantage of the state-of-the-art hardware and exhibit performance at the levels expected by the underlying hardware capabilities
    • …
    corecore