2,089 research outputs found

    Atom Interferometers

    Full text link
    Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review we first describe the basic tools for coherent atom optics including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on AtomChips. Then we review scientific advances in a broad range of fields that have resulted from the application of atom interferometers. These are grouped in three categories: (1) fundamental quantum science, (2) precision metrology and (3) atomic and molecular physics. Although some experiments with Bose Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e. phenomena where each single atom interferes with itself.Comment: submitted to Reviews of Modern Physic

    Far-field scattering microscopy applied to analysis of slow light, power enhancement, and delay times in uniform Bragg waveguide gratings

    Get PDF
    A novel method is presented for determining the group index, intensity enhancement and delay times for waveguide gratings, based on (Rayleigh) scattering observations. This far-field scattering microscopy (FScM) method is compared with the phase shift method and a method that uses the transmission spectrum to quantify the slow wave properties. We find a minimum group velocity of 0.04c and a maximum intensity enhancement of ~14.5 for a 1000-period grating and a maximum group delay of ~80 ps for a 2000-period grating. Furthermore, we show that the FScM method can be used for both displaying the intensity distribution of the Bloch resonances and for investigating out of plane losses. Finally, an application is discussed for the slow-wave grating as index sensor able to detect a minimum cladding index change of 10810^{-8}, assuming a transmission detection limit of 10410^{-4}

    Physics with Coherent Matter Waves

    Full text link
    This review discusses progress in the new field of coherent matter waves, in particular with respect to Bose-Einstein condensates. We give a short introduction to Bose-Einstein condensation and the theoretical description of the condensate wavefunction. We concentrate on the coherence properties of this new type of matter wave as a basis for fundamental physics and applications. The main part of this review treats various measurements and concepts in the physics with coherent matter waves. In particular we present phase manipulation methods, atom lasers, nonlinear atom optics, optical elements, interferometry and physics in optical lattices. We give an overview of the state of the art in the respective fields and discuss achievements and challenges for the future

    MAGNETO-PHOTONIC CRYSTALS FOR OPTICAL SENSING APPLICATIONS

    Get PDF
    Among the optical structures investigated for optical sensing purpose, a significant amount of research has been conducted on photonic crystal based sensors. A particular advantage of photonic crystal based sensors is that they show superior sensitivity for ultra-small volume sensing. In this study we investigate polarization changes in response to the changes in the cover index of magneto-optic active photonic band gap structures. One-dimensional photonic-band gap structures fabricated on iron garnet materials yield large polarization rotations at the band gap edges. The enhanced polarization effects serve as an excellent tool for chemical sensing showing high degree of sensitivity for photonic crystal cover refractive index changes. The one dimensional waveguide photonic crystals are fabricated on single-layer bismuth-substituted rare earth iron garnet films ((Bi, Y, Lu)3(Fe, Ga)5O12 ) grown by liquid phase epitaxy on gadolinium gallium garnet substrates. Band gaps have been observed where Bragg scattering conditions links forward-going fundamental waveguide modes to backscattered high-order waveguide modes. Large near-band-edge polarization rotations which increase progressively with backscattered-mode order have been experimentally demonstrated for multiple samples with different composition, film thickness and fabrication parameters. Experimental findings are supported by theoretical analysis of Bloch modes polarization states showing that large near stop-band edge rotations are induced by the magneto-photonic crystal. Theoretical and experimental analysis conducted on polarization rotation sensitivity to waveguide photonic crystal cover refractive index changes shows a monotonic enhancement of the rotation with cover index. The sensor is further developed for selective chemical sensing by employing Polypyrrole as the photonic crystal cover layer. Polypyrrole is one of the extensively studied conducting polymers for selective analyte detection. Successful detection of aqueous ammonia and methanol has been achieved with Polypyrrole deposited magneto-photonic crystals

    Group Theory of Circular-Polarization Effects in Chiral Photonic Crystals with Four-Fold Rotation Axes, Applied to the Eight-Fold Intergrowth of Gyroid Nets

    Full text link
    We use group or representation theory and scattering matrix calculations to derive analytical results for the band structure topology and the scattering parameters, applicable to any chiral photonic crystal with body-centered cubic symmetry I432 for circularly-polarised incident light. We demonstrate in particular that all bands along the cubic [100] direction can be identified with the irreducible representations E+/-,A and B of the C4 point group. E+ and E- modes represent the only transmission channels for plane waves with wave vector along the ? line, and can be identified as non-interacting transmission channels for right- (E-) and left-circularly polarised light (E+), respectively. Scattering matrix calculations provide explicit relationships for the transmission and reflectance amplitudes through a finite slab which guarantee equal transmission rates for both polarisations and vanishing ellipticity below a critical frequency, yet allowing for finite rotation of the polarisation plane. All results are verified numerically for the so-called 8-srs geometry, consisting of eight interwoven equal-handed dielectric Gyroid networks embedded in air. The combination of vanishing losses, vanishing ellipticity, near-perfect transmission and optical activity comparable to that of metallic meta-materials makes this geometry an attractive design for nanofabricated photonic materials
    corecore