4 research outputs found

    An improved reversed miller compensation technique for three-stage CMOS OTAs with double pole-zero cancellation and almost single-pole frequency response

    Get PDF
    This paper presents an improved reversed nested Miller compensation technique exploiting a single additional feed-forward stage to obtain double pole-zero cancellation and ideally single-pole behavior, in a three-stage Miller amplifier. The approach allows designing a three-stage operational transconductance amplifier (OTA) with one dominant pole and two (ideally) mutually cancelling pole-zero doublets. We demonstrate the robustness of the proposed cancellation technique, showing that it is not significantly influenced by process and temperature variations. The proposed design equations allow setting the unity-gain frequency of the amplifier and the complex poles' resonance frequency and quality factor. We introduce the notion of bandwidth efficiency to quantify the OTA performance with respect to a telescopic cascode OTA for given load capacitance and power consumption constraints and demonstrate analytically that the proposed approach allows a bandwidth efficiency that can ideally approach 100%. A CMOS implementation of the proposed compensation technique is provided, in which a current reuse scheme is used to reduce the total current consumption. The OTA has been designed using a 130-nm CMOS process by STMicroelectronics and achieves a DC gain larger than 120 dB, with almost single-pole frequency response. Monte Carlo simulations have been performed to show the robustness of the proposed approach to process, voltage, and temperature (PVT) variations and mismatches

    High speed – energy efficient successive approximation analog to digital converter using tri-level switching

    Get PDF
    This thesis reports issues and design methods used to achieve high-speed and high-resolution Successive Approximation Register analog to digital converters (SAR ADCs). A major drawback of this technique relates to the mismatch in the binary ratios of capacitors which causes nonlinearity. Another issue is the use of large capacitors due to nonlinear effect of parasitic capacitance. Nonlinear effect of capacitor mismatch is investigated in this thesis. Based on the analysis, a new Tri-level switching algorithm is proposed to reduce the matching requirement for capacitors in SAR ADCs. The integral non-linearity (INL) and the differential non-linearity (DNL) of the proposed scheme are reduced by factor of two over conventional SAR ADC, which is the lowest compared to the previously reported schemes. In addition, the switching energy of the proposed scheme is reduced by 98.02% compared with the conventional SAR architecture. A new correction method to solve metastability error of comparator based on a novel design approach is proposed which reduces the required settling time about 1.1τ for each conversion cycle. Based on the above proposed methods two SAR ADCs: an 8-bit SAR ADC with 50MS/sec sampling rate, and a 10-bit SAR split ADC with 70 MS/sec sampling rate have been designed in 0.18μm Silterra complementary metal oxide semiconductor (CMOS) technology process which works at 1.2V supply voltage and input voltage of 2.4Vp-p. The 8-bit ADC digitizes 25MHz input signal with 48.16dB signal to noise and distortion ratio (SNDR) and 52.41dB spurious free dynamic range (SFDR) while consuming about 589μW. The figure of merit (FOM) of this ADC is 56.65 fJ/conv-step. The post layout of the 10-bit ADC with 1MHz input frequency produces SNDR, SFDR and effective number of bits (ENOB) of 57.1dB, 64.05dB and 9.17Bit, respectively, while its DNL and INL are -0.9/+2.8 least significant bit (LSB) and -2.5/+2.7 LSB, respectively. The total power consumption, including digital, analog and reference power, is 1.6mW. The FOM is 71.75fJ/conv. step

    Design Solutions for Sample-and-Hold Circuits in CMOS Nanometer Technologies

    No full text
    Solutions for the design of low-voltage sample-andhold (S/H) circuits in CMOS nanometer technologies are presented. As a design example, a 0.8-V supply S/H is designed and simulated using a 130-nm CMOS process. It dissipates 0.5 mW at dc and provides almost a rail-to-rail signal swing. When clocked at 40 MS/s and with a 1.4-VPP differential input signal, the simulated spurious-free dynamic range, signal-to-noise ratio, and total harmonic distortion are 57, 67, and −56 dB (9 equivalent bits), respectively, with low sensitivity to supply, temperature, process, and mismatch variations. The proposed solution employs a three-stage low-voltage amplifier without a tail current source in the differential pair and a switch topology, which combines clock voltage doubling and dummy switches
    corecore